continue on spectrification

This commit is contained in:
Floris van Doorn 2016-10-10 11:10:24 -04:00
parent 946506af5c
commit a31c15e384
4 changed files with 58 additions and 10 deletions

View file

@ -8,6 +8,14 @@ namespace seq_colim
definition pseq_colim [constructor] {X : → Type*} (f : Πn, X n →* X (n+1)) : Type* := definition pseq_colim [constructor] {X : → Type*} (f : Πn, X n →* X (n+1)) : Type* :=
pointed.MK (seq_colim f) (@sι _ _ 0 pt) pointed.MK (seq_colim f) (@sι _ _ 0 pt)
definition inclusion_pt [constructor] {X : → Type*} (f : Πn, X n →* X (n+1)) (n : )
: inclusion f (Point (X n)) = Point (pseq_colim f) :=
by induction n with n p; reflexivity; exact (ap (sι f) !respect_pt)⁻¹ ⬝ !glue ⬝ p
definition pinclusion [constructor] {X : → Type*} (f : Πn, X n →* X (n+1)) (n : )
: X n →* pseq_colim f :=
pmap.mk (inclusion f) (inclusion_pt f n)
-- TODO: we need to prove this -- TODO: we need to prove this
definition pseq_colim_loop {X : → Type*} (f : Πn, X n →* X (n+1)) : definition pseq_colim_loop {X : → Type*} (f : Πn, X n →* X (n+1)) :
Ω (pseq_colim f) ≃* pseq_colim (λn, Ω→(f n)) := Ω (pseq_colim f) ≃* pseq_colim (λn, Ω→(f n)) :=

View file

@ -203,6 +203,7 @@ namespace smash
{ exact gluel' pt a ⬝ ap (smash.mk a) loop ⬝ gluel' a pt }, { exact gluel' pt a ⬝ ap (smash.mk a) loop ⬝ gluel' a pt },
end end
exit -- the definitions below compile, but take a long time to do so and have sorry's in them
definition smash_pcircle_of_psusp_of_smash_pcircle_pt [unfold 3] (a : A) (x : S¹*) : definition smash_pcircle_of_psusp_of_smash_pcircle_pt [unfold 3] (a : A) (x : S¹*) :
smash_pcircle_of_psusp (psusp_of_smash_pcircle (smash.mk a x)) = smash.mk a x := smash_pcircle_of_psusp (psusp_of_smash_pcircle (smash.mk a x)) = smash.mk a x :=
begin begin
@ -232,7 +233,6 @@ namespace smash
{ apply square_of_eq, exact whisker_right !con.right_inv _ }, { apply square_of_eq, exact whisker_right !con.right_inv _ },
{ apply square_pathover', exact sorry } { apply square_pathover', exact sorry }
end end
exit
definition smash_pcircle_pequiv [constructor] (A : Type*) : smash A S¹* ≃* psusp A := definition smash_pcircle_pequiv [constructor] (A : Type*) : smash A S¹* ≃* psusp A :=
begin begin

View file

@ -50,6 +50,11 @@ namespace spectrum
definition equiv_glue {N : succ_str} (E : gen_prespectrum N) [H : is_spectrum E] (n:N) : (E n) ≃* (Ω (E (S n))) := definition equiv_glue {N : succ_str} (E : gen_prespectrum N) [H : is_spectrum E] (n:N) : (E n) ≃* (Ω (E (S n))) :=
pequiv_of_pmap (glue E n) (is_spectrum.is_equiv_glue E n) pequiv_of_pmap (glue E n) (is_spectrum.is_equiv_glue E n)
-- a square when we compose glue with transporting over a path in N
definition glue_ptransport {N : succ_str} (X : gen_prespectrum N) {n n' : N} (p : n = n') :
glue X n' ∘* ptransport X p ~* Ω→ (ptransport X (ap S p)) ∘* glue X n :=
by induction p; exact !pcompose_pid ⬝* !pid_pcompose⁻¹* ⬝* pwhisker_right _ !ap1_pid⁻¹*
-- Sometimes an -indexed version does arise naturally, however, so -- Sometimes an -indexed version does arise naturally, however, so
-- we give a standard way to extend an -indexed (pre)spectrum to a -- we give a standard way to extend an -indexed (pre)spectrum to a
-- -indexed one. -- -indexed one.
@ -151,12 +156,20 @@ namespace spectrum
infixr ` ∘ₛ `:60 := scompose infixr ` ∘ₛ `:60 := scompose
definition szero {N : succ_str} (E F : gen_prespectrum N) : E →ₛ F := definition szero [constructor] {N : succ_str} (E F : gen_prespectrum N) : E →ₛ F :=
smap.mk (λn, pconst (E n) (F n)) smap.mk (λn, pconst (E n) (F n))
(λn, calc glue F n ∘* pconst (E n) (F n) ~* pconst (E n) (Ω(F (S n))) : pcompose_pconst (λn, calc glue F n ∘* pconst (E n) (F n) ~* pconst (E n) (Ω(F (S n))) : pcompose_pconst
... ~* pconst (Ω(E (S n))) (Ω(F (S n))) ∘* glue E n : pconst_pcompose ... ~* pconst (Ω(E (S n))) (Ω(F (S n))) ∘* glue E n : pconst_pcompose
... ~* Ω→(pconst (E (S n)) (F (S n))) ∘* glue E n : pwhisker_right (glue E n) (ap1_pconst _ _)) ... ~* Ω→(pconst (E (S n)) (F (S n))) ∘* glue E n : pwhisker_right (glue E n) (ap1_pconst _ _))
definition stransport [constructor] {N : succ_str} {A : Type} {a a' : A} (p : a = a')
(E : A → gen_prespectrum N) : E a →ₛ E a' :=
smap.mk (λn, ptransport (λa, E a n) p)
begin
intro n, induction p,
exact !pcompose_pid ⬝* !pid_pcompose⁻¹* ⬝* pwhisker_right _ !ap1_pid⁻¹*,
end
structure shomotopy {N : succ_str} {E F : gen_prespectrum N} (f g : E →ₛ F) := structure shomotopy {N : succ_str} {E F : gen_prespectrum N} (f g : E →ₛ F) :=
(to_phomotopy : Πn, f n ~* g n) (to_phomotopy : Πn, f n ~* g n)
(glue_homotopy : Πn, pwhisker_left (glue F n) (to_phomotopy n) ⬝* glue_square g n (glue_homotopy : Πn, pwhisker_left (glue F n) (to_phomotopy n) ⬝* glue_square g n
@ -378,15 +391,15 @@ namespace spectrum
begin begin
refine _ ⬝e* !pseq_colim_loop⁻¹ᵉ*, refine _ ⬝e* !pseq_colim_loop⁻¹ᵉ*,
refine !pshift_equiv ⬝e* _, refine !pshift_equiv ⬝e* _,
refine _ ⬝e* pseq_colim_equiv_constant (λn, !ap1_pcompose⁻¹*), transitivity pseq_colim (λk, spectrify_type_fun' X (succ k) (S n +' k)), rotate 1,
transitivity pseq_colim (λk, spectrify_type_fun' X (succ k) (S n +' k)), refine pseq_colim_equiv_constant (λn, !ap1_pcompose⁻¹*),
rotate 1, --exact pseq_colim_equiv_constant (λn, !ap1_pcompose⁻¹*),
reflexivity,
transitivity pseq_colim (λk, spectrify_type_fun' X (succ k) (n +' succ k)),
reflexivity,
fapply pseq_colim_pequiv, fapply pseq_colim_pequiv,
{ intro n, apply loopn_pequiv_loopn, apply pequiv_ap X, apply succ_str.add_succ }, { intro n, apply loopn_pequiv_loopn, apply pequiv_ap X, apply succ_str.add_succ },
{ intro n, apply to_homotopy, exact sorry } { intro k, apply to_homotopy,
refine !passoc⁻¹* ⬝* _, refine pwhisker_right _ (loopn_succ_in_inv_apn (succ k) _) ⬝* _,
refine !passoc ⬝* _ ⬝* !passoc⁻¹*, apply pwhisker_left,
refine !apn_pcompose⁻¹* ⬝* _ ⬝* !apn_pcompose, apply apn_phomotopy,
exact !glue_ptransport⁻¹* }
end end
definition spectrify [constructor] {N : succ_str} (X : gen_prespectrum N) : gen_spectrum N := definition spectrify [constructor] {N : succ_str} (X : gen_prespectrum N) : gen_spectrum N :=
@ -396,13 +409,21 @@ namespace spectrum
: X n →* Ω[k] (X (n +' k)) := : X n →* Ω[k] (X (n +' k)) :=
by induction k with k f; reflexivity; exact !loopn_succ_in⁻¹ᵉ* ∘* Ω→[k] (glue X (n +' k)) ∘* f by induction k with k f; reflexivity; exact !loopn_succ_in⁻¹ᵉ* ∘* Ω→[k] (glue X (n +' k)) ∘* f
-- note: the forward map is (currently) not definitionally equal to gluen. -- note: the forward map is (currently) not definitionally equal to gluen. Is that a problem?
definition equiv_gluen {N : succ_str} (X : gen_spectrum N) (n : N) (k : ) definition equiv_gluen {N : succ_str} (X : gen_spectrum N) (n : N) (k : )
: X n ≃* Ω[k] (X (n +' k)) := : X n ≃* Ω[k] (X (n +' k)) :=
by induction k with k f; reflexivity; exact f ⬝e* loopn_pequiv_loopn k (equiv_glue X (n +' k)) by induction k with k f; reflexivity; exact f ⬝e* loopn_pequiv_loopn k (equiv_glue X (n +' k))
⬝e* !loopn_succ_in⁻¹ᵉ* ⬝e* !loopn_succ_in⁻¹ᵉ*
definition spectrify_map {N : succ_str} {X : gen_prespectrum N} {Y : gen_spectrum N} definition spectrify_map {N : succ_str} {X : gen_prespectrum N} {Y : gen_spectrum N}
(f : X →ₛ Y) : X →ₛ spectrify X :=
begin
fapply smap.mk,
{ intro n, exact pinclusion _ 0},
{ intro n, exact sorry}
end
definition spectrify.elim {N : succ_str} {X : gen_prespectrum N} {Y : gen_spectrum N}
(f : X →ₛ Y) : spectrify X →ₛ Y := (f : X →ₛ Y) : spectrify X →ₛ Y :=
begin begin
fapply smap.mk, fapply smap.mk,

View file

@ -172,6 +172,15 @@ namespace pointed
: B a →* B a' := : B a →* B a' :=
pmap.mk (transport B p) (apdt (λa, Point (B a)) p) pmap.mk (transport B p) (apdt (λa, Point (B a)) p)
definition ptransport_change_eq [constructor] {A : Type} (B : A → Type*) {a a' : A} {p q : a = a'}
(r : p = q) : ptransport B p ~* ptransport B q :=
phomotopy.mk (λb, ap (λp, transport B p b) r) begin induction r, exact !idp_con end
definition pnatural_square {A B : Type} (X : B → Type*) {f g : A → B}
(h : Πa, X (f a) →* X (g a)) {a a' : A} (p : a = a') :
h a' ∘* ptransport X (ap f p) ~* ptransport X (ap g p) ∘* h a :=
by induction p; exact !pcompose_pid ⬝* !pid_pcompose⁻¹*
definition pequiv_ap [constructor] {A : Type} (B : A → Type*) {a a' : A} (p : a = a') definition pequiv_ap [constructor] {A : Type} (B : A → Type*) {a a' : A} (p : a = a')
: B a ≃* B a' := : B a ≃* B a' :=
pequiv_of_pmap (ptransport B p) !is_equiv_tr pequiv_of_pmap (ptransport B p) !is_equiv_tr
@ -279,6 +288,16 @@ namespace pointed
{a₁ a₂ : A} (p : a₁ = a₂) : pequiv_of_eq (ap C p) ∘* f a₁ ~* f a₂ ∘* pequiv_of_eq (ap B p) := {a₁ a₂ : A} (p : a₁ = a₂) : pequiv_of_eq (ap C p) ∘* f a₁ ~* f a₂ ∘* pequiv_of_eq (ap B p) :=
pcast_commute f p pcast_commute f p
-- TODO: make the name apn_succ_phomotopy_in consistent with this
definition loopn_succ_in_inv_apn {A B : Type*} (n : ) (f : A →* B) :
Ω→[n + 1] f ∘* (loopn_succ_in A n)⁻¹ᵉ* ~* (loopn_succ_in B n)⁻¹ᵉ* ∘* Ω→[n] (Ω→ f):=
begin
apply pinv_right_phomotopy_of_phomotopy,
refine _ ⬝* !passoc⁻¹*,
apply phomotopy_pinv_left_of_phomotopy,
apply apn_succ_phomotopy_in
end
end pointed end pointed
namespace fiber namespace fiber