diff --git a/homotopy/serre.hlean b/homotopy/serre.hlean index de278ea..7c3cb6d 100644 --- a/homotopy/serre.hlean +++ b/homotopy/serre.hlean @@ -142,8 +142,33 @@ section atiyah_hirzebruch apply ptrunc_pequiv, exact is_strunc_spi s₀ Y H k, end +--{X : Type*} (Y : X → spectrum) (s₀ : ℤ) (H : Πx, is_strunc s₀ (Y x)) end atiyah_hirzebruch +section unreduced_atiyah_hirzebruch + +open option + +definition unreduced_atiyah_hirzebruch_convergence {X : Type} (Y : X → spectrum) (s₀ : ℤ) + (H : Πx, is_strunc s₀ (Y x)) : + (λn s, uopH^-n[(x : X), πₛ[s] (Y x)]) ⟹ᵍ (λn, upH^-n[(x : X), Y x]) := +converges_to_g_isomorphism + (@atiyah_hirzebruch_convergence X₊ (add_point_spectrum Y) s₀ (is_strunc_add_point_spectrum H)) + begin + intro n s, exact sorry + -- refine _ ⬝g (parametrized_cohomology_isomorphism_shomotopy_group_spi _ idp)⁻¹ᵍ, + -- apply shomotopy_group_isomorphism_of_pequiv, intro k, + -- refine pfiber_postnikov_smap (spi X Y) s k ⬝e* _, + -- apply spi_EM_spectrum + end + begin + intro n, exact sorry + -- refine _ ⬝g (parametrized_cohomology_isomorphism_shomotopy_group_spi _ idp)⁻¹ᵍ, + -- apply shomotopy_group_isomorphism_of_pequiv, intro k, + -- apply ptrunc_pequiv, exact is_strunc_spi s₀ Y H k, + end +end unreduced_atiyah_hirzebruch + section serre variables {X : Type} (F : X → Type) (Y : spectrum) (s₀ : ℤ) (H : is_strunc s₀ Y) @@ -156,17 +181,17 @@ section serre /- NOTE: we need unreduced cohomology, maybe also define aityah_hirzebruch for unreduced cohomology -/ include H definition serre_convergence : - (λn s, opH^-n[(x : X₊), H^-s[F₊ₒ x, Y]]) ⟹ᵍ (λn, H^-n[(Σ(x : X), F x)₊, Y]) := - -- (λn s, uopH^-n[(x : X), uH^-s[F x, Y]]) ⟹ᵍ (λn, uH^-n[Σ(x : X), F x, Y]) := + (λn s, uopH^-n[(x : X), uH^-s[F x, Y]]) ⟹ᵍ (λn, uH^-n[Σ(x : X), F x, Y]) := proof converges_to_g_isomorphism (atiyah_hirzebruch_convergence (λx, sp_cotensor (F₊ₒ x) Y) s₀ (λx, is_strunc_sp_cotensor s₀ (F₊ₒ x) H)) begin - intro n s, - apply ordinary_parametrized_cohomology_isomorphism_right, - intro x, - exact (cohomology_isomorphism_shomotopy_group_sp_cotensor _ _ idp)⁻¹ᵍ, + exact sorry + -- intro n s, + -- apply ordinary_parametrized_cohomology_isomorphism_right, + -- intro x, + -- exact (cohomology_isomorphism_shomotopy_group_sp_cotensor _ _ idp)⁻¹ᵍ, end begin intro n, exact sorry diff --git a/homotopy/spectrum.hlean b/homotopy/spectrum.hlean index 6207293..03aff3c 100644 --- a/homotopy/spectrum.hlean +++ b/homotopy/spectrum.hlean @@ -345,6 +345,11 @@ namespace spectrum definition sunit.{u} [constructor] : spectrum.{u} := spectrum.MK (λn, plift punit) (λn, pequiv_of_is_contr _ _ _ _) + open option + definition add_point_spectrum {X : Type} (Y : X → spectrum) : X₊ → spectrum + | (some x) := Y x + | none := sunit + /--------------------- Homotopy groups ---------------------/ diff --git a/homotopy/strunc.hlean b/homotopy/strunc.hlean index bbfec92..f12c54a 100644 --- a/homotopy/strunc.hlean +++ b/homotopy/strunc.hlean @@ -173,6 +173,17 @@ definition strunc_functor [constructor] (k : ℤ) {E F : spectrum} (f : E →ₛ strunc k E →ₛ strunc k F := strunc_elim (str k F ∘ₛ f) (is_strunc_strunc k F) +definition is_strunc_sunit (n : ℤ) : is_strunc n sunit := +begin + intro k, apply is_trunc_lift, apply is_trunc_unit +end + +open option +definition is_strunc_add_point_spectrum {X : Type} {Y : X → spectrum} {s₀ : ℤ} + (H : Πx, is_strunc s₀ (Y x)) : Π(x : X₊), is_strunc s₀ (add_point_spectrum Y x) +| (some x) := H x +| none := is_strunc_sunit s₀ + definition is_strunc_EM_spectrum (G : AbGroup) : is_strunc 0 (EM_spectrum G) := begin