From a6bf82618f6002d230b18f01d8af72a7ff6aea3a Mon Sep 17 00:00:00 2001 From: Mike Shulman Date: Fri, 25 Mar 2016 09:33:36 -0700 Subject: [PATCH] feat(homotopy/spectrum): sections of parametrized spectra --- homotopy/spectrum.hlean | 20 +++++++++++++++++++- 1 file changed, 19 insertions(+), 1 deletion(-) diff --git a/homotopy/spectrum.hlean b/homotopy/spectrum.hlean index c7076d3..5bef630 100644 --- a/homotopy/spectrum.hlean +++ b/homotopy/spectrum.hlean @@ -6,7 +6,7 @@ Authors: Michael Shulman -/ import types.int types.pointed2 types.trunc homotopy.susp algebra.homotopy_group .chain_complex cubical -open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index +open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi /----------------------------------------- Stuff that should go in other files @@ -157,6 +157,16 @@ namespace pointed ... ≃* pfiber (g ∘* h) : pfiber_equiv_of_phomotopy s ... ≃* pfiber g : pequiv_precompose + definition ppi {A : Type} (P : A → Type*) : Type* := + pointed.mk' (Πa, P a) + + definition loop_ppi_commute {A : Type} (B : A → Type*) : Ω(ppi B) ≃* (ppi (λa, Ω (B a))) := + pequiv_of_equiv eq_equiv_homotopy rfl + + definition equiv_ppi_right {A : Type} {P Q : A → Type*} (g : Πa, P a ≃* Q a) : ppi P ≃* ppi Q := + pequiv_of_equiv (pi_equiv_pi_right g) + begin esimp, apply eq_of_homotopy, intros a, esimp, exact (respect_pt (g a)) end + end pointed open pointed @@ -357,6 +367,14 @@ namespace spectrum spectrum.MK (λn, ppmap A (B n)) (λn, (loop_pmap_commute A (B (S n)))⁻¹ᵉ* ∘*ᵉ (equiv_ppcompose_left (equiv_glue B n))) + ---------------------------------------- + -- Sections of parametrized spectra + ---------------------------------------- + + definition spi {N : succ_str} (A : Type) (E : A -> gen_spectrum N) : gen_spectrum N := + spectrum.MK (λn, ppi (λa, E a n)) + (λn, (loop_ppi_commute (λa, E a (S n)))⁻¹ᵉ* ∘*ᵉ equiv_ppi_right (λa, equiv_glue (E a) n)) + /----------------------------------------- Fibers and long exact sequences -----------------------------------------/