diff --git a/homology/homology.hlean b/homology/homology.hlean index ebfa457..2f4145c 100644 --- a/homology/homology.hlean +++ b/homology/homology.hlean @@ -6,10 +6,10 @@ Authors: Yuri Sulyma, Favonia Reduced homology theories -/ -import ..homotopy.spectrum ..homotopy.EM ..algebra.arrow_group ..algebra.direct_sum ..homotopy.fwedge ..choice ..homotopy.pushout ..move_to_lib +import ..homotopy.spectrum ..homotopy.EM ..algebra.arrow_group ..algebra.direct_sum ..homotopy.fwedge ..homotopy.wedge ..choice ..homotopy.pushout ..move_to_lib open eq spectrum int pointed group algebra sphere nat equiv susp is_trunc - function fwedge cofiber lift is_equiv choice algebra pi smash + function fwedge cofiber lift is_equiv choice algebra pi smash wedge namespace homology @@ -129,6 +129,20 @@ namespace homology ... ≃g HH theory n A ×g HH theory n B : by exact binary_dirsum (HH theory n A) (HH theory n B) end + section + universe variables u v + parameter (theory : homology_theory.{max u v}) + open homology_theory + + definition Hplift_psusp (n : ℤ) (A : Type*): HH theory (n + 1) (plift.{u v} (psusp A)) ≃g HH theory n (plift.{u v} A) := + calc HH theory (n + 1) (plift.{u v} (psusp A)) ≃g HH theory (n + 1) (psusp (plift.{u v} A)) : by exact HH_isomorphism theory (n + 1) (plift_psusp _) + ... ≃g HH theory n (plift.{u v} A) : by exact Hpsusp theory n (plift.{u v} A) + + definition Hplift_pwedge (n : ℤ) (A B : Type*): HH theory n (plift.{u v} (A ∨ B)) ≃g HH theory n (plift.{u v} A) ×g HH theory n (plift.{u v} B) := + calc HH theory n (plift.{u v} (A ∨ B)) ≃g HH theory n (plift.{u v} A ∨ plift.{u v} B) : by exact HH_isomorphism theory n (plift_pwedge A B) + ... ≃g HH theory n (plift.{u v} A) ×g HH theory n (plift.{u v} B) : by exact Hpwedge theory n (plift.{u v} A) (plift.{u v} B) + + end /- homology theory associated to a prespectrum -/ definition homology (X : Type*) (E : prespectrum) (n : ℤ) : AbGroup := diff --git a/homology/sphere.hlean b/homology/sphere.hlean index d6f789f..e428191 100644 --- a/homology/sphere.hlean +++ b/homology/sphere.hlean @@ -23,10 +23,9 @@ section { exact λ n, isomorphism_ap (λ n, HH theory n (plift (psphere 0))) (sub_zero n)⁻¹ }, { intro n, exact calc HH theory n (plift (psusp (psphere m))) - ≃g HH theory n (psusp (plift (psphere m))) : by exact HH_isomorphism theory n (plift_psusp (psphere m)) - ... ≃g HH theory (succ (pred n)) (psusp (plift (psphere m))) - : by exact isomorphism_ap (λ n, HH theory n (psusp (plift (psphere m)))) (succ_pred n)⁻¹ - ... ≃g HH theory (pred n) (plift (psphere m)) : by exact Hpsusp theory (pred n) (plift (psphere m)) + ≃g HH theory (succ (pred n)) (plift (psusp (psphere m))) + : by exact isomorphism_ap (λ n, HH theory n (plift (psusp (psphere m)))) (succ_pred n)⁻¹ + ... ≃g HH theory (pred n) (plift (psphere m)) : by exact Hplift_psusp theory (pred n) (psphere m) ... ≃g HH theory (pred n - m) (plift (psphere 0)) : by exact v_0 (pred n) ... ≃g HH theory (n - succ m) (plift (psphere 0)) : by exact isomorphism_ap (λ n, HH theory n (plift (psphere 0))) (sub_sub n 1 m ⬝ ap (λ m, n - m) (add.comm 1 m)) diff --git a/homology/torus.hlean b/homology/torus.hlean new file mode 100644 index 0000000..e2bf276 --- /dev/null +++ b/homology/torus.hlean @@ -0,0 +1,40 @@ +/- +Copyright (c) 2017 Kuen-Bang Hou (Favonia). +Released under Apache 2.0 license as described in the file LICENSE. + +Author: Kuen-Bang Hou (Favonia) +-/ + +import .homology .sphere ..susp_product + +open eq pointed group algebra circle sphere nat equiv susp + function sphere homology int lift prod smash + +namespace homology + +section + parameter (theory : ordinary_homology_theory) + + open ordinary_homology_theory + + theorem Hptorus : Π(n : ℤ)(m : ℕ), HH theory n (plift (psphere m ×* psphere m)) ≃g + HH theory n (plift (psphere m)) ×g (HH theory n (plift (psphere m)) ×g HH theory n (plift (psphere (m + m)))) := λ n m, + calc HH theory n (plift (psphere m ×* psphere m)) + ≃g HH theory (n + 1) (plift (⅀ (psphere m ×* psphere m))) : by exact (Hplift_psusp theory n (psphere m ×* psphere m))⁻¹ᵍ + ... ≃g HH theory (n + 1) (plift (⅀ (psphere m) ∨ (⅀ (psphere m) ∨ ⅀ (psphere m ∧ psphere m)))) + : by exact HH_isomorphism theory (n + 1) (!pequiv_plift⁻¹ᵉ* ⬝e* susp_product (psphere m) (psphere m) ⬝e* !pequiv_plift) + ... ≃g HH theory (n + 1) (plift (⅀ (psphere m))) ×g HH theory (n + 1) (plift (⅀ (psphere m) ∨ (⅀ (psphere m ∧ psphere m)))) + : by exact Hplift_pwedge theory (n + 1) (⅀ (psphere m)) (⅀ (psphere m) ∨ (⅀ (psphere m ∧ psphere m))) + ... ≃g HH theory n (plift (psphere m)) ×g (HH theory n (plift (psphere m)) ×g HH theory n (plift (psphere (m + m)))) + : by exact product_isomorphism (Hplift_psusp theory n (psphere m)) + (calc + HH theory (n + 1) (plift (⅀ (psphere m) ∨ (⅀ (psphere m ∧ psphere m)))) + ≃g HH theory (n + 1) (plift (⅀ (psphere m))) ×g HH theory (n + 1) (plift (⅀ (psphere m ∧ psphere m))) + : by exact Hplift_pwedge theory (n + 1) (⅀ (psphere m)) (⅀ (psphere m ∧ psphere m)) + ... ≃g HH theory n (plift (psphere m)) ×g HH theory n (plift (psphere (m + m))) + : by exact product_isomorphism (Hplift_psusp theory n (psphere m)) + (Hplift_psusp theory n (psphere m ∧ psphere m) ⬝g HH_isomorphism theory n (!pequiv_plift⁻¹ᵉ* ⬝e* (sphere_smash_sphere m m) ⬝e* !pequiv_plift))) + +end + +end homology