Functoriality of smashing a pointed space with a prespectrum
This commit is contained in:
parent
7125413a9a
commit
abe46fd211
2 changed files with 47 additions and 1 deletions
|
@ -454,6 +454,23 @@ prespectrum.mk (λ z, X ∧ Y z) begin
|
||||||
exact !glue
|
exact !glue
|
||||||
end
|
end
|
||||||
|
|
||||||
|
definition smash_prespectrum_fun {X X' : Type*} {Y Y' : prespectrum} (f : X →* X') (g : Y →ₛ Y') : smash_prespectrum X Y →ₛ smash_prespectrum X' Y' :=
|
||||||
|
begin
|
||||||
|
refine smap.mk (λn, smash_functor f (g n)) _,
|
||||||
|
intro n,
|
||||||
|
refine susp_to_loop_psquare _ _ _ _ _,
|
||||||
|
refine pvconcat (psquare_transpose (phinverse (smash_psusp_natural f (g n)))) _,
|
||||||
|
refine vconcat_phomotopy _ (smash_functor_split f (g (S n))),
|
||||||
|
refine phomotopy_vconcat (smash_functor_split f (psusp_functor (g n))) _,
|
||||||
|
refine phconcat _ _,
|
||||||
|
let glue_adjoint := psusp_pelim (Y n) (Y (S n)) (glue Y n),
|
||||||
|
exact pid X' ∧→ glue_adjoint,
|
||||||
|
exact smash_functor_psquare (pvrefl f) (phrefl glue_adjoint),
|
||||||
|
refine smash_functor_psquare (phrefl (pid X')) _,
|
||||||
|
refine loop_to_susp_square _ _ _ _ _,
|
||||||
|
exact smap.glue_square g n
|
||||||
|
end
|
||||||
|
|
||||||
/- Cofibers and stability -/
|
/- Cofibers and stability -/
|
||||||
|
|
||||||
/- The Eilenberg-MacLane spectrum -/
|
/- The Eilenberg-MacLane spectrum -/
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
-- definitions, theorems and attributes which should be moved to files in the HoTT library
|
-- definitions, theorems and attributes which should be moved to files in the HoTT library
|
||||||
|
|
||||||
import homotopy.sphere2 homotopy.cofiber homotopy.wedge hit.prop_trunc hit.set_quotient eq2
|
import homotopy.sphere2 homotopy.cofiber homotopy.wedge hit.prop_trunc hit.set_quotient eq2 types.pointed2 homotopy.smash_adjoint
|
||||||
|
|
||||||
open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group
|
open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group
|
||||||
is_trunc function sphere unit sum prod bool
|
is_trunc function sphere unit sum prod bool
|
||||||
|
@ -536,3 +536,32 @@ open trunc fiber image
|
||||||
end
|
end
|
||||||
|
|
||||||
end injective_surjective
|
end injective_surjective
|
||||||
|
|
||||||
|
-- Yuri Sulyma's code from HoTT MRC
|
||||||
|
|
||||||
|
notation `⅀→`:(max+5) := psusp_functor
|
||||||
|
|
||||||
|
namespace pointed
|
||||||
|
variables {A₀₀ A₂₀ A₀₂ A₂₂ : Type*}
|
||||||
|
{f₁₀ : A₀₀ →* A₂₀} {f₁₂ : A₀₂ →* A₂₂}
|
||||||
|
{f₀₁ : A₀₀ →* A₀₂} {f₂₁ : A₂₀ →* A₂₂}
|
||||||
|
|
||||||
|
definition psquare_transpose (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : psquare f₀₁ f₂₁ f₁₀ f₁₂ := p⁻¹*
|
||||||
|
|
||||||
|
definition suspend_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : psquare (⅀→ f₁₀) (⅀→ f₁₂) (⅀→ f₀₁) (⅀→ f₂₁) :=
|
||||||
|
sorry
|
||||||
|
|
||||||
|
definition susp_to_loop_psquare (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂) (f₀₁ : psusp A₀₀ →* A₀₂) (f₂₁ : psusp A₂₀ →* A₂₂) : (psquare (⅀→ f₁₀) f₁₂ f₀₁ f₂₁) → (psquare f₁₀ (Ω→ f₁₂) ((loop_psusp_pintro A₀₀ A₀₂) f₀₁) ((loop_psusp_pintro A₂₀ A₂₂) f₂₁)) :=
|
||||||
|
begin
|
||||||
|
intro p,
|
||||||
|
refine pvconcat _ (ap1_psquare p),
|
||||||
|
exact loop_psusp_unit_natural f₁₀
|
||||||
|
end
|
||||||
|
|
||||||
|
definition loop_to_susp_square (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂) (f₀₁ : A₀₀ →* Ω A₀₂) (f₂₁ : A₂₀ →* Ω A₂₂) : (psquare f₁₀ (Ω→ f₁₂) f₀₁ f₂₁) → (psquare (⅀→ f₁₀) f₁₂ ((psusp_pelim A₀₀ A₀₂) f₀₁) ((psusp_pelim A₂₀ A₂₂) f₂₁)) :=
|
||||||
|
begin
|
||||||
|
intro p,
|
||||||
|
refine pvconcat (suspend_psquare p) _,
|
||||||
|
exact psquare_transpose (loop_psusp_counit_natural f₁₂)
|
||||||
|
end
|
||||||
|
end pointed
|
||||||
|
|
Loading…
Reference in a new issue