some cleanup, and add a todo list
This commit is contained in:
parent
8937371b33
commit
acae548d3a
4 changed files with 33 additions and 21 deletions
|
@ -58,8 +58,17 @@ namespace group
|
|||
definition ab_product [constructor] (G G' : AbGroup) : AbGroup :=
|
||||
AbGroup.mk _ (ab_group_prod G G')
|
||||
|
||||
definition add_product [constructor] (G G' : AddGroup) : AddGroup :=
|
||||
group.product G G'
|
||||
|
||||
definition add_ab_product [constructor] (G G' : AddAbGroup) : AddAbGroup :=
|
||||
group.ab_product G G'
|
||||
|
||||
infix ` ×g `:60 := group.product
|
||||
infix ` ×ag `:60 := group.ab_product
|
||||
infix ` ×a `:60 := group.add_product
|
||||
infix ` ×aa `:60 := group.add_ab_product
|
||||
|
||||
|
||||
definition product_inl [constructor] (G H : Group) : G →g G ×g H :=
|
||||
homomorphism.mk (λx, (x, one)) (λx y, prod_eq !refl !one_mul⁻¹)
|
||||
|
|
|
@ -592,17 +592,8 @@ namespace left_module
|
|||
|
||||
open int group prod convergence_theorem prod.ops
|
||||
|
||||
definition Z2 [constructor] : AddAbGroup := agℤ ×ag agℤ
|
||||
definition Z2 [constructor] : AddAbGroup := agℤ ×aa agℤ
|
||||
|
||||
-- set_option pp.coercions true
|
||||
-- set_option pp.binder_types true
|
||||
|
||||
-- todo: move
|
||||
definition AddAbGroup.struct2 [instance] (G : AddAbGroup) :
|
||||
add_ab_group (algebra._trans_of_Group_of_AbGroup_2 G) :=
|
||||
AddAbGroup.struct G
|
||||
|
||||
/- TODO: redefine/generalize converges_to so that it supports the usual indexing on ℤ × ℤ -/
|
||||
structure converges_to.{u v w} {R : Ring} (E' : agℤ → agℤ → LeftModule.{u v} R)
|
||||
(Dinf : agℤ → LeftModule.{u w} R) : Type.{max u (v+1) (w+1)} :=
|
||||
(X : exact_couple.{u 0 w v} R Z2)
|
||||
|
@ -614,16 +605,6 @@ namespace left_module
|
|||
(deg_d1 : ℕ → agℤ) (deg_d2 : ℕ → agℤ)
|
||||
(deg_d_eq0 : Π(r : ℕ), deg (d (page X r)) 0 = (deg_d1 r, deg_d2 r))
|
||||
|
||||
structure converging_spectral_sequence.{u v w} {R : Ring} (E' : agℤ → agℤ → LeftModule.{u v} R)
|
||||
(Dinf : agℤ → LeftModule.{u w} R) : Type.{max u (v+1) (w+1)} :=
|
||||
(E : ℕ → graded_module.{u 0 v} R Z2)
|
||||
(d : Π(n : ℕ), E n →gm E n)
|
||||
(α : Π(n : ℕ) (x : Z2), E (n+1) x ≃lm graded_homology (d n) (d n) x)
|
||||
(e : Π(n : ℕ) (x : Z2), E 0 x ≃lm E' x.1 x.2)
|
||||
(s₀ : Z2 → ℕ)
|
||||
(f : Π{n : ℕ} {x : Z2} (h : s₀ x ≤ n), E (s₀ x) x ≃lm E n x)
|
||||
(HDinf : Π(n : agℤ), is_built_from (Dinf n) (λ(k : ℕ), (λx, E (s₀ x) x) (k, n - k)))
|
||||
|
||||
infix ` ⟹ `:25 := converges_to
|
||||
|
||||
definition converges_to_g [reducible] (E' : agℤ → agℤ → AbGroup) (Dinf : agℤ → AbGroup) : Type :=
|
||||
|
@ -757,6 +738,25 @@ namespace left_module
|
|||
converges_to_isomorphism c (λn s, lm_iso_int.mk (e' n s)) (λn, lm_iso_int.mk (f' n))
|
||||
|
||||
|
||||
structure converging_spectral_sequence.{u v w} {R : Ring} (E' : agℤ → agℤ → LeftModule.{u v} R)
|
||||
(Dinf : agℤ → LeftModule.{u w} R) : Type.{max u (v+1) (w+1)} :=
|
||||
(E : ℕ → graded_module.{u 0 v} R Z2)
|
||||
(d : Π(n : ℕ), E n →gm E n)
|
||||
(α : Π(n : ℕ) (x : Z2), E (n+1) x ≃lm graded_homology (d n) (d n) x)
|
||||
(e : Π(n : ℕ) (x : Z2), E 0 x ≃lm E' x.1 x.2)
|
||||
(s₀ : Z2 → ℕ)
|
||||
(f : Π{n : ℕ} {x : Z2} (h : s₀ x ≤ n), E (s₀ x) x ≃lm E n x)
|
||||
(lb : ℤ → ℤ)
|
||||
(HDinf : Π(n : agℤ), is_built_from (Dinf n) (λ(k : ℕ), (λx, E (s₀ x) x) (k + lb n, n - (k + lb n))))
|
||||
|
||||
/-
|
||||
todo:
|
||||
- rename "converges_to" to converging_exact_couple
|
||||
- double-check the definition of converging_spectral_sequence
|
||||
- construct converging spectral sequence from a converging exact couple (with the additional hypothesis that the degree of i is (1, -1) or something)
|
||||
- redefine `⟹` to be a converging spectral sequence
|
||||
-/
|
||||
|
||||
end left_module
|
||||
open left_module
|
||||
namespace pointed
|
||||
|
|
|
@ -296,7 +296,6 @@ section serre
|
|||
begin intro n, apply unreduced_cohomology_isomorphism, exact !sigma_fiber_equiv⁻¹ᵉ end
|
||||
qed
|
||||
|
||||
|
||||
end serre
|
||||
|
||||
|
||||
|
|
|
@ -7,6 +7,10 @@ open eq nat int susp pointed sigma is_equiv equiv fiber algebra trunc pi group
|
|||
|
||||
universe variable u
|
||||
|
||||
definition AddAbGroup.struct2 [instance] (G : AddAbGroup) :
|
||||
add_ab_group (algebra._trans_of_Group_of_AbGroup_2 G) :=
|
||||
AddAbGroup.struct G
|
||||
|
||||
namespace eq
|
||||
|
||||
definition transport_lemma {A : Type} {C : A → Type} {g₁ : A → A}
|
||||
|
|
Loading…
Reference in a new issue