From ae01bcba865b5860113423db684339840fb9db74 Mon Sep 17 00:00:00 2001 From: Clive Newstead Date: Thu, 18 Feb 2016 16:16:55 -0500 Subject: [PATCH] Created sec83.hlean --- homotopy/sec83.hlean | 49 ++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 49 insertions(+) create mode 100644 homotopy/sec83.hlean diff --git a/homotopy/sec83.hlean b/homotopy/sec83.hlean new file mode 100644 index 0000000..d0ebeaf --- /dev/null +++ b/homotopy/sec83.hlean @@ -0,0 +1,49 @@ +-- Section 8.3 + +import types.trunc types.pointed homotopy.connectedness homotopy.sphere homotopy.circle algebra.group algebra.homotopy_group + +open eq is_trunc is_equiv nat equiv trunc function circle algebra pointed is_trunc.trunc_index homotopy + +notation `Floris` := sorry + +-- Lemma 8.3.1 + +definition homotopy_group_of_is_trunc (A : Type*) (n : ℕ) (p : is_trunc n A) : ∀(k : ℕ), πG[n+k+1] A = G0 := +begin + intro k, + apply @trivial_group_of_is_contr, + apply is_trunc_trunc_of_is_trunc, + apply is_contr_loop_of_is_trunc, + apply @is_trunc_of_leq A n _, + induction k with k IHk, + { + apply is_trunc.trunc_index.le.refl + }, + { + induction n with n IHn, + { + constructor + }, + { + exact Floris + } + } +end + +-- Lemma 8.3.2 +definition trunc_trunc (n k : ℕ₋₂) (p : k ≤ n) (A : Type) + : trunc k (trunc n A) ≃ trunc k A := +sorry + +definition zero_trunc_of_iterated_loop_space (k : ℕ) (A : Type*) + : trunc 0 (Ω[k] A) ≃ Ω[k](pointed.MK (trunc k A) (tr pt)) := +sorry + + +definition homotopy_group_of_is_conn (A : Type*) (n : ℕ) (p : is_conn n A) : ∀(k : ℕ), (k ≤ n) → is_contr(π[k] A) := +begin + intros k H, + exact Floris +end + +-- Corollary 8.3.3