diff --git a/set.hlean b/set.hlean new file mode 100644 index 0000000..3e580b6 --- /dev/null +++ b/set.hlean @@ -0,0 +1,88 @@ +/- +Copyright (c) 2017 Jeremy Avigad. All rights reserved. +Released under Apache 2.0 license as described in the file LICENSE. +Authors: Jeremy Avigad +-/ +import types.trunc +open funext eq trunc is_trunc + +definition set (X : Type) := X → Prop + +section +open trunc_index + +definition propext {p q : Prop} (h : p ↔ q) : p = q := +tua (equiv_of_iff_of_is_prop h) + +end + +definition tempty {n : trunc_index} : (n.+1)-Type := trunctype.mk empty _ + +namespace set + +variable {X : Type} + +/- membership and subset -/ + +definition mem (x : X) (a : set X) := a x +infix ∈ := mem +notation a ∉ b := ¬ mem a b + +theorem ext {a b : set X} (H : ∀x, x ∈ a ↔ x ∈ b) : a = b := +eq_of_homotopy (take x, propext (H x)) + +definition subset (a b : set X) : Prop := Prop.mk (∀⦃x⦄, x ∈ a → x ∈ b) _ +infix ⊆ := subset + +definition superset (s t : set X) : Prop := t ⊆ s +infix ⊇ := superset + +theorem subset.refl (a : set X) : a ⊆ a := take x, assume H, H + +theorem subset.trans {a b c : set X} (subab : a ⊆ b) (subbc : b ⊆ c) : a ⊆ c := +take x, assume ax, subbc (subab ax) + +theorem subset.antisymm {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b := +ext (λ x, iff.intro (λ ina, h₁ ina) (λ inb, h₂ inb)) + +-- an alterantive name +theorem eq_of_subset_of_subset {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b := +subset.antisymm h₁ h₂ + +theorem mem_of_subset_of_mem {s₁ s₂ : set X} {a : X} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ := +assume h₁ h₂, h₁ _ h₂ + +/- empty set -/ + +definition empty : set X := λx, tempty +notation `∅` := empty + +theorem not_mem_empty (x : X) : ¬ (x ∈ ∅) := +assume H : x ∈ ∅, H + +theorem mem_empty_eq (x : X) : x ∈ ∅ = tempty := rfl + +/- +theorem eq_empty_of_forall_not_mem {s : set X} (H : ∀ x, x ∉ s) : s = ∅ := +ext (take x, iff.intro + (assume xs, absurd xs (H x)) + (assume xe, absurd xe (not_mem_empty _))) + +theorem ne_empty_of_mem {s : set X} {x : X} (H : x ∈ s) : s ≠ ∅ := + begin intro Hs, rewrite Hs at H, apply not_mem_empty _ H end + +theorem empty_subset (s : set X) : ∅ ⊆ s := +take x, assume H, false.elim H + +theorem eq_empty_of_subset_empty {s : set X} (H : s ⊆ ∅) : s = ∅ := +subset.antisymm H (empty_subset s) + +theorem subset_empty_iff (s : set X) : s ⊆ ∅ ↔ s = ∅ := +iff.intro eq_empty_of_subset_empty (take xeq, by rewrite xeq; apply subset.refl ∅) + +lemma bounded_forall_empty_iff {P : X → Prop} : + (∀₀x∈∅, P x) ↔ true := +iff.intro (take H, true.intro) (take H, by contradiction) +-/ + +end set