full_subgroup
This commit is contained in:
parent
af0b342de8
commit
aeec8cae85
1 changed files with 5 additions and 5 deletions
|
@ -34,13 +34,13 @@ namespace group
|
|||
|
||||
definition is_trivial_subgroup (G : Group) (R : subgroup_rel G) : Prop := sorry /- Π g, R g = trivial_subgroup g -/
|
||||
|
||||
definition full_subgroup.{u} (G : Group.{u}) : subgroup_rel.{u u} G :=
|
||||
definition full_subgroup.{u} (G : Group.{u}) : subgroup_rel.{u 0} G :=
|
||||
begin
|
||||
fapply subgroup_rel.mk,
|
||||
{ intro g, fapply trunctype.mk, exact g = g, exact _}, -- instead of the unit type, we take g = g, because the unit type is in Type₀ and not in Type.{u}
|
||||
{ esimp },
|
||||
{ intros g h p q, esimp },
|
||||
{ intros g p, esimp }
|
||||
{ intro g, fapply trunctype.mk, exact unit, exact _}, -- instead of the unit type, we take g = g, because the unit type is in Type₀ and not in Type.{u}
|
||||
{ esimp, constructor },
|
||||
{ intros g h p q, esimp, constructor },
|
||||
{ intros g p, esimp, constructor }
|
||||
end
|
||||
|
||||
definition is_full_subgroup (G : Group) (R : subgroup_rel G) : Prop := sorry /- Π g, R g -/
|
||||
|
|
Loading…
Reference in a new issue