move things to the Lean library, and update after changes in the Lean library
This commit is contained in:
parent
4f1db25e16
commit
b08457c77f
21 changed files with 200 additions and 2194 deletions
|
@ -21,12 +21,12 @@ namespace group
|
|||
definition Group_arrow (A : Type) (G : Group) : Group :=
|
||||
Group.mk (A → G) _
|
||||
|
||||
definition comm_group_arrow [instance] (A B : Type) [comm_group B] : comm_group (A → B) :=
|
||||
⦃comm_group, group_arrow A B,
|
||||
definition ab_group_arrow [instance] (A B : Type) [ab_group B] : ab_group (A → B) :=
|
||||
⦃ab_group, group_arrow A B,
|
||||
mul_comm := by intros; apply eq_of_homotopy; intro a; apply mul.comm⦄
|
||||
|
||||
definition CommGroup_arrow (A : Type) (G : CommGroup) : CommGroup :=
|
||||
CommGroup.mk (A → G) _
|
||||
definition AbGroup_arrow (A : Type) (G : AbGroup) : AbGroup :=
|
||||
AbGroup.mk (A → G) _
|
||||
|
||||
definition pgroup_ppmap [instance] (A B : Type*) [pgroup B] : pgroup (ppmap A B) :=
|
||||
begin
|
||||
|
@ -44,12 +44,12 @@ namespace group
|
|||
definition Group_pmap (A : Type*) (G : Group) : Group :=
|
||||
Group_of_pgroup (ppmap A (pType_of_Group G))
|
||||
|
||||
definition CommGroup_pmap (A : Type*) (G : CommGroup) : CommGroup :=
|
||||
CommGroup.mk (A →* pType_of_Group G)
|
||||
⦃ comm_group, Group.struct (Group_pmap A G),
|
||||
definition AbGroup_pmap (A : Type*) (G : AbGroup) : AbGroup :=
|
||||
AbGroup.mk (A →* pType_of_Group G)
|
||||
⦃ ab_group, Group.struct (Group_pmap A G),
|
||||
mul_comm := by intro f g; apply pmap_eq_of_homotopy; intro a; apply mul.comm ⦄
|
||||
|
||||
definition Group_pmap_homomorphism [constructor] {A A' : Type*} (f : A' →* A) (G : CommGroup) :
|
||||
definition Group_pmap_homomorphism [constructor] {A A' : Type*} (f : A' →* A) (G : AbGroup) :
|
||||
Group_pmap A G →g Group_pmap A' G :=
|
||||
begin
|
||||
fapply homomorphism.mk,
|
||||
|
|
|
@ -13,21 +13,21 @@ open eq algebra is_trunc set_quotient relation sigma prod sum list trunc functio
|
|||
namespace group
|
||||
|
||||
variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}
|
||||
{A B : CommGroup}
|
||||
{A B : AbGroup}
|
||||
|
||||
variables (X : Set) {l l' : list (X ⊎ X)}
|
||||
|
||||
section
|
||||
|
||||
parameters {I : Set} (Y : I → CommGroup)
|
||||
variables {A' : CommGroup}
|
||||
parameters {I : Set} (Y : I → AbGroup)
|
||||
variables {A' : AbGroup}
|
||||
|
||||
definition dirsum_carrier : CommGroup := free_comm_group (trunctype.mk (Σi, Y i) _)
|
||||
local abbreviation ι [constructor] := @free_comm_group_inclusion
|
||||
definition dirsum_carrier : AbGroup := free_ab_group (trunctype.mk (Σi, Y i) _)
|
||||
local abbreviation ι [constructor] := @free_ab_group_inclusion
|
||||
inductive dirsum_rel : dirsum_carrier → Type :=
|
||||
| rmk : Πi y₁ y₂, dirsum_rel (ι ⟨i, y₁⟩ * ι ⟨i, y₂⟩ * (ι ⟨i, y₁ * y₂⟩)⁻¹)
|
||||
|
||||
definition dirsum : CommGroup := quotient_comm_group_gen dirsum_carrier (λg, ∥dirsum_rel g∥)
|
||||
definition dirsum : AbGroup := quotient_ab_group_gen dirsum_carrier (λg, ∥dirsum_rel g∥)
|
||||
|
||||
-- definition dirsum_carrier_incl [constructor] (i : I) : Y i →g dirsum_carrier :=
|
||||
|
||||
|
@ -36,7 +36,7 @@ namespace group
|
|||
begin intro g h, symmetry, apply gqg_eq_of_rel, apply tr, apply dirsum_rel.rmk end
|
||||
|
||||
definition dirsum_elim_resp_quotient (f : Πi, Y i →g A') (g : dirsum_carrier)
|
||||
(r : ∥dirsum_rel g∥) : free_comm_group_elim (λv, f v.1 v.2) g = 1 :=
|
||||
(r : ∥dirsum_rel g∥) : free_ab_group_elim (λv, f v.1 v.2) g = 1 :=
|
||||
begin
|
||||
induction r with r, induction r,
|
||||
rewrite [to_respect_mul, to_respect_inv], apply mul_inv_eq_of_eq_mul,
|
||||
|
@ -44,7 +44,7 @@ namespace group
|
|||
end
|
||||
|
||||
definition dirsum_elim [constructor] (f : Πi, Y i →g A') : dirsum →g A' :=
|
||||
gqg_elim _ (free_comm_group_elim (λv, f v.1 v.2)) (dirsum_elim_resp_quotient f)
|
||||
gqg_elim _ (free_ab_group_elim (λv, f v.1 v.2)) (dirsum_elim_resp_quotient f)
|
||||
|
||||
definition dirsum_elim_compute (f : Πi, Y i →g A') (i : I) :
|
||||
dirsum_elim f ∘g dirsum_incl i ~ f i :=
|
||||
|
@ -56,7 +56,7 @@ namespace group
|
|||
(H : Πi, k ∘g dirsum_incl i ~ f i) : k ~ dirsum_elim f :=
|
||||
begin
|
||||
apply gqg_elim_unique,
|
||||
apply free_comm_group_elim_unique,
|
||||
apply free_ab_group_elim_unique,
|
||||
intro x, induction x with i y, exact H i y
|
||||
end
|
||||
|
||||
|
|
|
@ -11,13 +11,13 @@ import algebra.group_theory hit.set_quotient types.sigma types.list types.sum .q
|
|||
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function group trunc
|
||||
equiv
|
||||
|
||||
structure is_exact {A B C : CommGroup} (f : A →g B) (g : B →g C) :=
|
||||
structure is_exact {A B C : AbGroup} (f : A →g B) (g : B →g C) :=
|
||||
( im_in_ker : Π(a:A), g (f a) = 1)
|
||||
( ker_in_im : Π(b:B), (g b = 1) → ∃(a:A), f a = b)
|
||||
|
||||
definition is_differential {B : CommGroup} (d : B →g B) := Π(b:B), d (d b) = 1
|
||||
definition is_differential {B : AbGroup} (d : B →g B) := Π(b:B), d (d b) = 1
|
||||
|
||||
definition image_subgroup_of_diff {B : CommGroup} (d : B →g B) (H : is_differential d) : subgroup_rel (comm_kernel d) :=
|
||||
definition image_subgroup_of_diff {B : AbGroup} (d : B →g B) (H : is_differential d) : subgroup_rel (ab_kernel d) :=
|
||||
subgroup_rel_of_subgroup (image_subgroup d) (kernel_subgroup d)
|
||||
begin
|
||||
intro g p,
|
||||
|
@ -27,19 +27,19 @@ definition image_subgroup_of_diff {B : CommGroup} (d : B →g B) (H : is_differe
|
|||
exact H h
|
||||
end
|
||||
|
||||
definition homology {B : CommGroup} (d : B →g B) (H : is_differential d) : CommGroup :=
|
||||
@quotient_comm_group (comm_kernel d) (image_subgroup_of_diff d H)
|
||||
definition homology {B : AbGroup} (d : B →g B) (H : is_differential d) : AbGroup :=
|
||||
@quotient_ab_group (ab_kernel d) (image_subgroup_of_diff d H)
|
||||
|
||||
structure exact_couple (A B : CommGroup) : Type :=
|
||||
structure exact_couple (A B : AbGroup) : Type :=
|
||||
( i : A →g A) (j : A →g B) (k : B →g A)
|
||||
( exact_ij : is_exact i j)
|
||||
( exact_jk : is_exact j k)
|
||||
( exact_ki : is_exact k i)
|
||||
|
||||
definition differential {A B : CommGroup} (EC : exact_couple A B) : B →g B :=
|
||||
definition differential {A B : AbGroup} (EC : exact_couple A B) : B →g B :=
|
||||
(exact_couple.j EC) ∘g (exact_couple.k EC)
|
||||
|
||||
definition differential_is_differential {A B : CommGroup} (EC : exact_couple A B) : is_differential (differential EC) :=
|
||||
definition differential_is_differential {A B : AbGroup} (EC : exact_couple A B) : is_differential (differential EC) :=
|
||||
begin
|
||||
induction EC,
|
||||
induction exact_jk,
|
||||
|
@ -49,12 +49,12 @@ definition differential_is_differential {A B : CommGroup} (EC : exact_couple A B
|
|||
|
||||
section derived_couple
|
||||
|
||||
variables {A B : CommGroup} (EC : exact_couple A B)
|
||||
variables {A B : AbGroup} (EC : exact_couple A B)
|
||||
|
||||
definition derived_couple_A : CommGroup :=
|
||||
comm_subgroup (image_subgroup (exact_couple.i EC))
|
||||
definition derived_couple_A : AbGroup :=
|
||||
ab_subgroup (image_subgroup (exact_couple.i EC))
|
||||
|
||||
definition derived_couple_B : CommGroup :=
|
||||
definition derived_couple_B : AbGroup :=
|
||||
homology (differential EC) (differential_is_differential EC)
|
||||
|
||||
definition derived_couple_i : derived_couple_A EC →g derived_couple_A EC :=
|
||||
|
|
|
@ -12,12 +12,12 @@ open eq algebra is_trunc set_quotient relation sigma sigma.ops prod sum list tru
|
|||
|
||||
namespace group
|
||||
|
||||
variables {G G' : Group} {g g' h h' k : G} {A B : CommGroup}
|
||||
variables {G G' : Group} {g g' h h' k : G} {A B : AbGroup}
|
||||
|
||||
variables (X : Set) {l l' : list (X ⊎ X)}
|
||||
|
||||
/- Free Commutative Group of a set -/
|
||||
namespace free_comm_group
|
||||
/- Free Abelian Group of a set -/
|
||||
namespace free_ab_group
|
||||
|
||||
inductive fcg_rel : list (X ⊎ X) → list (X ⊎ X) → Type :=
|
||||
| rrefl : Πl, fcg_rel l l
|
||||
|
@ -133,22 +133,22 @@ namespace group
|
|||
rewrite [-append_concat], apply IH}
|
||||
end
|
||||
end
|
||||
end free_comm_group open free_comm_group
|
||||
end free_ab_group open free_ab_group
|
||||
|
||||
variables (X)
|
||||
definition group_free_comm_group [constructor] : comm_group (fcg_carrier X) :=
|
||||
comm_group.mk fcg_mul _ fcg_mul_assoc fcg_one fcg_one_mul fcg_mul_one
|
||||
definition group_free_ab_group [constructor] : ab_group (fcg_carrier X) :=
|
||||
ab_group.mk fcg_mul _ fcg_mul_assoc fcg_one fcg_one_mul fcg_mul_one
|
||||
fcg_inv fcg_mul_left_inv fcg_mul_comm
|
||||
|
||||
definition free_comm_group [constructor] : CommGroup :=
|
||||
CommGroup.mk _ (group_free_comm_group X)
|
||||
definition free_ab_group [constructor] : AbGroup :=
|
||||
AbGroup.mk _ (group_free_ab_group X)
|
||||
|
||||
/- The universal property of the free commutative group -/
|
||||
variables {X A}
|
||||
definition free_comm_group_inclusion [constructor] (x : X) : free_comm_group X :=
|
||||
definition free_ab_group_inclusion [constructor] (x : X) : free_ab_group X :=
|
||||
class_of [inl x]
|
||||
|
||||
theorem fgh_helper_respect_comm_rel (f : X → A) (r : fcg_rel X l l')
|
||||
theorem fgh_helper_respect_fcg_rel (f : X → A) (r : fcg_rel X l l')
|
||||
: Π(g : A), foldl (fgh_helper f) g l = foldl (fgh_helper f) g l' :=
|
||||
begin
|
||||
induction r with l x x x y l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂: intro g,
|
||||
|
@ -160,22 +160,22 @@ namespace group
|
|||
{ exact !IH₁ ⬝ !IH₂}
|
||||
end
|
||||
|
||||
definition free_comm_group_elim [constructor] (f : X → A) : free_comm_group X →g A :=
|
||||
definition free_ab_group_elim [constructor] (f : X → A) : free_ab_group X →g A :=
|
||||
begin
|
||||
fapply homomorphism.mk,
|
||||
{ intro g, refine set_quotient.elim _ _ g,
|
||||
{ intro l, exact foldl (fgh_helper f) 1 l},
|
||||
{ intro l l' r, esimp at *, refine trunc.rec _ r, clear r, intro r,
|
||||
exact fgh_helper_respect_comm_rel f r 1}},
|
||||
exact fgh_helper_respect_fcg_rel f r 1}},
|
||||
{ refine set_quotient.rec_prop _, intro l, refine set_quotient.rec_prop _, intro l',
|
||||
esimp, refine !foldl_append ⬝ _, esimp, apply fgh_helper_mul}
|
||||
end
|
||||
|
||||
definition fn_of_free_comm_group_elim [unfold_full] (φ : free_comm_group X →g A) : X → A :=
|
||||
φ ∘ free_comm_group_inclusion
|
||||
definition fn_of_free_ab_group_elim [unfold_full] (φ : free_ab_group X →g A) : X → A :=
|
||||
φ ∘ free_ab_group_inclusion
|
||||
|
||||
definition free_comm_group_elim_unique [constructor] (f : X → A) (k : free_comm_group X →g A)
|
||||
(H : k ∘ free_comm_group_inclusion ~ f) : k ~ free_comm_group_elim f :=
|
||||
definition free_ab_group_elim_unique [constructor] (f : X → A) (k : free_ab_group X →g A)
|
||||
(H : k ∘ free_ab_group_inclusion ~ f) : k ~ free_ab_group_elim f :=
|
||||
begin
|
||||
refine set_quotient.rec_prop _, intro l, esimp,
|
||||
induction l with s l IH,
|
||||
|
@ -187,13 +187,13 @@ namespace group
|
|||
end
|
||||
|
||||
variables (X A)
|
||||
definition free_comm_group_elim_equiv_fn [constructor] : (free_comm_group X →g A) ≃ (X → A) :=
|
||||
definition free_ab_group_elim_equiv_fn [constructor] : (free_ab_group X →g A) ≃ (X → A) :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ exact fn_of_free_comm_group_elim},
|
||||
{ exact free_comm_group_elim},
|
||||
{ exact fn_of_free_ab_group_elim},
|
||||
{ exact free_ab_group_elim},
|
||||
{ intro f, apply eq_of_homotopy, intro x, esimp, unfold [foldl], apply one_mul},
|
||||
{ intro k, symmetry, apply homomorphism_eq, apply free_comm_group_elim_unique,
|
||||
{ intro k, symmetry, apply homomorphism_eq, apply free_ab_group_elim_unique,
|
||||
reflexivity }
|
||||
end
|
||||
|
||||
|
|
|
@ -12,7 +12,7 @@ open eq algebra is_trunc set_quotient relation sigma sigma.ops prod sum list tru
|
|||
|
||||
namespace group
|
||||
|
||||
variables {G G' : Group} {g g' h h' k : G} {A B : CommGroup}
|
||||
variables {G G' : Group} {g g' h h' k : G} {A B : AbGroup}
|
||||
|
||||
/- Free Group of a set -/
|
||||
variables (X : Set) {l l' : list (X ⊎ X)}
|
||||
|
|
|
@ -11,29 +11,29 @@ import .free_commutative_group
|
|||
open eq algebra is_trunc sigma sigma.ops prod trunc function equiv
|
||||
namespace group
|
||||
|
||||
variables {G G' : Group} {g g' h h' k : G} {A B : CommGroup}
|
||||
variables {G G' : Group} {g g' h h' k : G} {A B : AbGroup}
|
||||
|
||||
/- Tensor group (WIP) -/
|
||||
|
||||
/- namespace tensor_group
|
||||
variables {A B}
|
||||
local abbreviation ι := @free_comm_group_inclusion
|
||||
local abbreviation ι := @free_ab_group_inclusion
|
||||
|
||||
inductive tensor_rel_type : free_comm_group (Set_of_Group A ×t Set_of_Group B) → Type :=
|
||||
inductive tensor_rel_type : free_ab_group (Set_of_Group A ×t Set_of_Group B) → Type :=
|
||||
| mul_left : Π(a₁ a₂ : A) (b : B), tensor_rel_type (ι (a₁, b) * ι (a₂, b) * (ι (a₁ * a₂, b))⁻¹)
|
||||
| mul_right : Π(a : A) (b₁ b₂ : B), tensor_rel_type (ι (a, b₁) * ι (a, b₂) * (ι (a, b₁ * b₂))⁻¹)
|
||||
|
||||
open tensor_rel_type
|
||||
|
||||
definition tensor_rel' (x : free_comm_group (Set_of_Group A ×t Set_of_Group B)) : Prop :=
|
||||
definition tensor_rel' (x : free_ab_group (Set_of_Group A ×t Set_of_Group B)) : Prop :=
|
||||
∥ tensor_rel_type x ∥
|
||||
|
||||
definition tensor_group_rel (A B : CommGroup)
|
||||
: normal_subgroup_rel (free_comm_group (Set_of_Group A ×t Set_of_Group B)) :=
|
||||
definition tensor_group_rel (A B : AbGroup)
|
||||
: normal_subgroup_rel (free_ab_group (Set_of_Group A ×t Set_of_Group B)) :=
|
||||
sorry /- relation generated by tensor_rel'-/
|
||||
|
||||
definition tensor_group [constructor] : CommGroup :=
|
||||
quotient_comm_group (tensor_group_rel A B)
|
||||
definition tensor_group [constructor] : AbGroup :=
|
||||
quotient_ab_group (tensor_group_rel A B)
|
||||
|
||||
end tensor_group-/
|
||||
|
||||
|
|
|
@ -17,7 +17,7 @@ infixl ` • `:73 := has_scalar.smul
|
|||
|
||||
/- modules over a ring -/
|
||||
|
||||
structure left_module (R M : Type) [ringR : ring R] extends has_scalar R M, comm_group M renaming
|
||||
structure left_module (R M : Type) [ringR : ring R] extends has_scalar R M, ab_group M renaming
|
||||
mul→add mul_assoc→add_assoc one→zero one_mul→zero_add mul_one→add_zero inv→neg
|
||||
mul_left_inv→add_left_inv mul_comm→add_comm :=
|
||||
(smul_left_distrib : Π (r : R) (x y : M), smul r (add x y) = (add (smul r x) (smul r y)))
|
||||
|
@ -26,12 +26,12 @@ structure left_module (R M : Type) [ringR : ring R] extends has_scalar R M, comm
|
|||
(one_smul : Π x, smul one x = x)
|
||||
|
||||
/- we make it a class now (and not as part of the structure) to avoid
|
||||
left_module.to_comm_group to be an instance -/
|
||||
left_module.to_ab_group to be an instance -/
|
||||
attribute left_module [class]
|
||||
|
||||
definition add_comm_group_of_left_module [reducible] [trans_instance] (R M : Type) [K : ring R]
|
||||
[H : left_module R M] : add_comm_group M :=
|
||||
@left_module.to_comm_group R M K H
|
||||
definition add_ab_group_of_left_module [reducible] [trans_instance] (R M : Type) [K : ring R]
|
||||
[H : left_module R M] : add_ab_group M :=
|
||||
@left_module.to_ab_group R M K H
|
||||
|
||||
definition has_scalar_of_left_module [reducible] [trans_instance] (R M : Type) [K : ring R]
|
||||
[H : left_module R M] : has_scalar R M :=
|
||||
|
|
|
@ -13,7 +13,7 @@ open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum
|
|||
namespace group
|
||||
|
||||
variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}
|
||||
{A B : CommGroup}
|
||||
{A B : AbGroup}
|
||||
|
||||
/- Binary products (direct product) of Groups -/
|
||||
definition product_one [constructor] : G × G' := (one, one)
|
||||
|
@ -39,7 +39,7 @@ namespace group
|
|||
theorem product_mul_left_inv (g : G × G') : g⁻¹ * g = 1 :=
|
||||
prod_eq !mul.left_inv !mul.left_inv
|
||||
|
||||
theorem product_mul_comm {G G' : CommGroup} (g h : G × G') : g * h = h * g :=
|
||||
theorem product_mul_comm {G G' : AbGroup} (g h : G × G') : g * h = h * g :=
|
||||
prod_eq !mul.comm !mul.comm
|
||||
|
||||
end
|
||||
|
@ -52,11 +52,11 @@ namespace group
|
|||
definition product [constructor] : Group :=
|
||||
Group.mk _ (group_prod G G')
|
||||
|
||||
definition comm_group_prod [constructor] (G G' : CommGroup) : comm_group (G × G') :=
|
||||
⦃comm_group, group_prod G G', mul_comm := product_mul_comm⦄
|
||||
definition ab_group_prod [constructor] (G G' : AbGroup) : ab_group (G × G') :=
|
||||
⦃ab_group, group_prod G G', mul_comm := product_mul_comm⦄
|
||||
|
||||
definition comm_product [constructor] (G G' : CommGroup) : CommGroup :=
|
||||
CommGroup.mk _ (comm_group_prod G G')
|
||||
definition ab_product [constructor] (G G' : AbGroup) : AbGroup :=
|
||||
AbGroup.mk _ (ab_group_prod G G')
|
||||
|
||||
infix ` ×g `:30 := group.product
|
||||
|
||||
|
|
|
@ -13,7 +13,7 @@ open eq algebra is_trunc set_quotient relation sigma sigma.ops prod trunc functi
|
|||
namespace group
|
||||
|
||||
variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}
|
||||
variables {A B : CommGroup}
|
||||
variables {A B : AbGroup}
|
||||
|
||||
/- Quotient Group -/
|
||||
|
||||
|
@ -113,7 +113,7 @@ namespace group
|
|||
exact ap class_of !mul.left_inv
|
||||
end
|
||||
|
||||
theorem quotient_mul_comm {G : CommGroup} {N : normal_subgroup_rel G} (g h : qg N)
|
||||
theorem quotient_mul_comm {G : AbGroup} {N : normal_subgroup_rel G} (g h : qg N)
|
||||
: g * h = h * g :=
|
||||
begin
|
||||
refine set_quotient.rec_prop _ g, clear g, intro g,
|
||||
|
@ -131,18 +131,18 @@ namespace group
|
|||
definition quotient_group [constructor] : Group :=
|
||||
Group.mk _ (group_qg N)
|
||||
|
||||
definition comm_group_qg [constructor] {G : CommGroup} (N : normal_subgroup_rel G)
|
||||
: comm_group (qg N) :=
|
||||
⦃comm_group, group_qg N, mul_comm := quotient_mul_comm⦄
|
||||
definition ab_group_qg [constructor] {G : AbGroup} (N : normal_subgroup_rel G)
|
||||
: ab_group (qg N) :=
|
||||
⦃ab_group, group_qg N, mul_comm := quotient_mul_comm⦄
|
||||
|
||||
definition quotient_comm_group [constructor] {G : CommGroup} (N : subgroup_rel G)
|
||||
: CommGroup :=
|
||||
CommGroup.mk _ (comm_group_qg (normal_subgroup_rel_comm N))
|
||||
definition quotient_ab_group [constructor] {G : AbGroup} (N : subgroup_rel G)
|
||||
: AbGroup :=
|
||||
AbGroup.mk _ (ab_group_qg (normal_subgroup_rel_ab N))
|
||||
|
||||
definition qg_map [constructor] : G →g quotient_group N :=
|
||||
homomorphism.mk class_of (λ g h, idp)
|
||||
|
||||
definition comm_gq_map {G : CommGroup} (N : subgroup_rel G) : G →g quotient_comm_group N :=
|
||||
definition ab_gq_map {G : AbGroup} (N : subgroup_rel G) : G →g quotient_ab_group N :=
|
||||
begin
|
||||
fapply homomorphism.mk,
|
||||
exact class_of,
|
||||
|
@ -166,7 +166,7 @@ namespace group
|
|||
unfold quotient_rel, rewrite e, exact H
|
||||
end
|
||||
|
||||
definition comm_gq_map_eq_one {K : subgroup_rel A} (g :A) (H : K g) : comm_gq_map K g = 1 :=
|
||||
definition ab_gq_map_eq_one {K : subgroup_rel A} (g :A) (H : K g) : ab_gq_map K g = 1 :=
|
||||
begin
|
||||
apply eq_of_rel,
|
||||
have e : (g * 1⁻¹ = g),
|
||||
|
@ -237,17 +237,17 @@ namespace group
|
|||
{fapply is_prop.elimo} }
|
||||
end
|
||||
|
||||
definition comm_group_quotient_homomorphism (A B : CommGroup)(K : subgroup_rel A)(L : subgroup_rel B) (f : A →g B)
|
||||
(p : Π(a:A), K(a) → L(f a)) : quotient_comm_group K →g quotient_comm_group L :=
|
||||
definition ab_group_quotient_homomorphism (A B : AbGroup)(K : subgroup_rel A)(L : subgroup_rel B) (f : A →g B)
|
||||
(p : Π(a:A), K(a) → L(f a)) : quotient_ab_group K →g quotient_ab_group L :=
|
||||
begin
|
||||
fapply quotient_group_elim,
|
||||
exact (comm_gq_map L) ∘g f,
|
||||
exact (ab_gq_map L) ∘g f,
|
||||
intro a,
|
||||
intro k,
|
||||
exact @comm_gq_map_eq_one B L (f a) (p a k),
|
||||
exact @ab_gq_map_eq_one B L (f a) (p a k),
|
||||
end
|
||||
|
||||
definition comm_group_first_iso_thm (A B : CommGroup) (f : A →g B) : quotient_comm_group (kernel_subgroup f) ≃g comm_image f :=
|
||||
definition ab_group_first_iso_thm (A B : AbGroup) (f : A →g B) : quotient_ab_group (kernel_subgroup f) ≃g ab_image f :=
|
||||
begin
|
||||
fapply isomorphism.mk,
|
||||
fapply quotient_group_elim,
|
||||
|
@ -260,7 +260,7 @@ definition comm_group_first_iso_thm (A B : CommGroup) (f : A →g B) : quotient_
|
|||
-- show that the above map is injective and surjective.
|
||||
end
|
||||
|
||||
definition comm_group_kernel_factor {A B C: CommGroup} (f : A →g B)(g : A →g C){i : C →g B}(H : f = i ∘g g )
|
||||
definition ab_group_kernel_factor {A B C: AbGroup} (f : A →g B)(g : A →g C){i : C →g B}(H : f = i ∘g g )
|
||||
: Π a:A , kernel_subgroup(g)(a) → kernel_subgroup(f)(a) :=
|
||||
begin
|
||||
intro a,
|
||||
|
@ -271,12 +271,12 @@ definition comm_group_kernel_factor {A B C: CommGroup} (f : A →g B)(g : A →g
|
|||
... = 1 : respect_one i
|
||||
end
|
||||
|
||||
definition comm_group_kernel_equivalent {A B : CommGroup} (C : CommGroup) (f : A →g B)(g : A →g C)(i : C →g B)(H : f = i ∘g g )(K : is_embedding i)
|
||||
definition ab_group_kernel_equivalent {A B : AbGroup} (C : AbGroup) (f : A →g B)(g : A →g C)(i : C →g B)(H : f = i ∘g g )(K : is_embedding i)
|
||||
: Π a:A , kernel_subgroup(g)(a) ↔ kernel_subgroup(f)(a) :=
|
||||
begin
|
||||
intro a,
|
||||
fapply iff.intro,
|
||||
exact comm_group_kernel_factor f g H a,
|
||||
exact ab_group_kernel_factor f g H a,
|
||||
intro p,
|
||||
apply @is_injective_of_is_embedding _ _ i _ (g a) 1,
|
||||
exact calc
|
||||
|
@ -285,23 +285,23 @@ begin
|
|||
... = i 1 : (respect_one i)⁻¹
|
||||
end
|
||||
|
||||
definition comm_group_kernel_image_lift (A B : CommGroup) (f : A →g B)
|
||||
definition ab_group_kernel_image_lift (A B : AbGroup) (f : A →g B)
|
||||
: Π a : A, kernel_subgroup(image_lift(f))(a) ↔ kernel_subgroup(f)(a) :=
|
||||
begin
|
||||
fapply comm_group_kernel_equivalent (comm_image f) (f) (image_lift(f)) (image_incl(f)),
|
||||
fapply ab_group_kernel_equivalent (ab_image f) (f) (image_lift(f)) (image_incl(f)),
|
||||
exact image_factor f,
|
||||
exact is_embedding_of_is_injective (image_incl_injective(f)),
|
||||
end
|
||||
|
||||
definition comm_group_kernel_quotient_to_image {A B : CommGroup} (f : A →g B)
|
||||
: quotient_comm_group (kernel_subgroup f) →g comm_image (f) :=
|
||||
definition ab_group_kernel_quotient_to_image {A B : AbGroup} (f : A →g B)
|
||||
: quotient_ab_group (kernel_subgroup f) →g ab_image (f) :=
|
||||
begin
|
||||
fapply quotient_group_elim (image_lift f), intro a, intro p,
|
||||
apply iff.mpr (comm_group_kernel_image_lift _ _ f a) p
|
||||
apply iff.mpr (ab_group_kernel_image_lift _ _ f a) p
|
||||
end
|
||||
|
||||
definition is_surjective_kernel_quotient_to_image {A B : CommGroup} (f : A →g B)
|
||||
: is_surjective (comm_group_kernel_quotient_to_image f) :=
|
||||
definition is_surjective_kernel_quotient_to_image {A B : AbGroup} (f : A →g B)
|
||||
: is_surjective (ab_group_kernel_quotient_to_image f) :=
|
||||
begin
|
||||
intro b, exact sorry
|
||||
-- have H : is_surjective (image_lift f)
|
||||
|
@ -312,8 +312,8 @@ print iff.mpr
|
|||
|
||||
section
|
||||
|
||||
parameters {A₁ : CommGroup} (S : A₁ → Prop)
|
||||
variable {A₂ : CommGroup}
|
||||
parameters {A₁ : AbGroup} (S : A₁ → Prop)
|
||||
variable {A₂ : AbGroup}
|
||||
|
||||
inductive generating_relation' : A₁ → Type :=
|
||||
| rincl : Π{g}, S g → generating_relation' g
|
||||
|
@ -337,9 +337,9 @@ print iff.mpr
|
|||
Rmul := gr_mul⦄
|
||||
|
||||
parameter (A₁)
|
||||
definition quotient_comm_group_gen : CommGroup := quotient_comm_group normal_generating_relation
|
||||
definition quotient_ab_group_gen : AbGroup := quotient_ab_group normal_generating_relation
|
||||
|
||||
definition gqg_map [constructor] : A₁ →g quotient_comm_group_gen :=
|
||||
definition gqg_map [constructor] : A₁ →g quotient_ab_group_gen :=
|
||||
qg_map _
|
||||
|
||||
parameter {A₁}
|
||||
|
@ -347,7 +347,7 @@ print iff.mpr
|
|||
eq_of_rel (tr (rincl H))
|
||||
|
||||
definition gqg_elim [constructor] (f : A₁ →g A₂) (H : Π⦃g⦄, S g → f g = 1)
|
||||
: quotient_comm_group_gen →g A₂ :=
|
||||
: quotient_ab_group_gen →g A₂ :=
|
||||
begin
|
||||
apply quotient_group_elim f,
|
||||
intro g r, induction r with r,
|
||||
|
@ -365,7 +365,7 @@ print iff.mpr
|
|||
end
|
||||
|
||||
definition gqg_elim_unique (f : A₁ →g A₂) (H : Π⦃g⦄, S g → f g = 1)
|
||||
(k : quotient_comm_group_gen →g A₂) : ( k ∘g gqg_map ~ f ) → k ~ gqg_elim f H :=
|
||||
(k : quotient_ab_group_gen →g A₂) : ( k ∘g gqg_map ~ f ) → k ~ gqg_elim f H :=
|
||||
!gelim_unique
|
||||
|
||||
end
|
||||
|
|
|
@ -130,12 +130,12 @@ namespace group
|
|||
abbreviation is_normal_subgroup [unfold 2] := @normal_subgroup_rel.is_normal_subgroup
|
||||
|
||||
variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}
|
||||
{A B : CommGroup}
|
||||
{A B : AbGroup}
|
||||
|
||||
theorem is_normal_subgroup' (h : G) (r : N g) : N (h⁻¹ * g * h) :=
|
||||
inv_inv h ▸ is_normal_subgroup N h⁻¹ r
|
||||
|
||||
definition normal_subgroup_rel_comm.{u} [constructor] (R : subgroup_rel.{_ u} A)
|
||||
definition normal_subgroup_rel_ab.{u} [constructor] (R : subgroup_rel.{_ u} A)
|
||||
: normal_subgroup_rel.{_ u} A :=
|
||||
⦃normal_subgroup_rel, R,
|
||||
is_normal_subgroup := abstract begin
|
||||
|
@ -209,7 +209,7 @@ namespace group
|
|||
theorem subgroup_mul_left_inv (g : sg H) : g⁻¹ * g = 1 :=
|
||||
subtype_eq !mul.left_inv
|
||||
|
||||
theorem subgroup_mul_comm {G : CommGroup} {H : subgroup_rel G} (g h : sg H)
|
||||
theorem subgroup_mul_comm {G : AbGroup} {H : subgroup_rel G} (g h : sg H)
|
||||
: g * h = h * g :=
|
||||
subtype_eq !mul.comm
|
||||
|
||||
|
@ -223,17 +223,17 @@ namespace group
|
|||
definition subgroup [constructor] : Group :=
|
||||
Group.mk _ (group_sg H)
|
||||
|
||||
definition comm_group_sg [constructor] {G : CommGroup} (H : subgroup_rel G)
|
||||
: comm_group (sg H) :=
|
||||
⦃comm_group, group_sg H, mul_comm := subgroup_mul_comm⦄
|
||||
definition ab_group_sg [constructor] {G : AbGroup} (H : subgroup_rel G)
|
||||
: ab_group (sg H) :=
|
||||
⦃ab_group, group_sg H, mul_comm := subgroup_mul_comm⦄
|
||||
|
||||
definition comm_subgroup [constructor] {G : CommGroup} (H : subgroup_rel G)
|
||||
: CommGroup :=
|
||||
CommGroup.mk _ (comm_group_sg H)
|
||||
definition ab_subgroup [constructor] {G : AbGroup} (H : subgroup_rel G)
|
||||
: AbGroup :=
|
||||
AbGroup.mk _ (ab_group_sg H)
|
||||
|
||||
definition kernel {G H : Group} (f : G →g H) : Group := subgroup (kernel_subgroup f)
|
||||
|
||||
definition comm_kernel {G H : CommGroup} (f : G →g H) : CommGroup := comm_subgroup (kernel_subgroup f)
|
||||
definition ab_kernel {G H : AbGroup} (f : G →g H) : AbGroup := ab_subgroup (kernel_subgroup f)
|
||||
|
||||
definition incl_of_subgroup [constructor] {G : Group} (H : subgroup_rel G) : subgroup H →g G :=
|
||||
begin
|
||||
|
@ -258,19 +258,19 @@ namespace group
|
|||
definition image {G H : Group} (f : G →g H) : Group :=
|
||||
subgroup (image_subgroup f)
|
||||
|
||||
definition CommGroup_of_Group.{u} (G : Group.{u}) (H : Π (g h : G), mul g h = mul h g) : CommGroup.{u} :=
|
||||
definition AbGroup_of_Group.{u} (G : Group.{u}) (H : Π (g h : G), mul g h = mul h g) : AbGroup.{u} :=
|
||||
begin
|
||||
induction G,
|
||||
induction struct,
|
||||
fapply CommGroup.mk,
|
||||
fapply AbGroup.mk,
|
||||
exact carrier,
|
||||
fapply comm_group.mk,
|
||||
fapply ab_group.mk,
|
||||
repeat assumption,
|
||||
exact H
|
||||
end
|
||||
|
||||
definition comm_image {G : CommGroup} {H : Group} (f : G →g H) : CommGroup :=
|
||||
CommGroup_of_Group (image f)
|
||||
definition ab_image {G : AbGroup} {H : Group} (f : G →g H) : AbGroup :=
|
||||
AbGroup_of_Group (image f)
|
||||
begin
|
||||
intro g h,
|
||||
induction g with x t, induction h with y s,
|
||||
|
|
|
@ -389,7 +389,7 @@ namespace seq_colim
|
|||
rewrite [▸*, +ap_con, ap_inv, +succ_add_tr_rep_succ, con_inv, inv_con_inv_right, +con.assoc],
|
||||
apply whisker_left,
|
||||
rewrite [- +con.assoc], apply whisker_right, rewrite [- +ap_compose'],
|
||||
note s := (eq_top_of_square (natural_square
|
||||
note s := (eq_top_of_square (natural_square_tr
|
||||
(λx, fn_tr_eq_tr_fn (succ_add n k) f x ⬝ (tr_ap A succ (succ_add n k) (f x))⁻¹) p))⁻¹,
|
||||
rewrite [inv_con_inv_right at s, -con.assoc at s], exact s
|
||||
end
|
||||
|
|
|
@ -1,317 +0,0 @@
|
|||
/-
|
||||
Copyright (c) 2016 Floris van Doorn. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Authors: Floris van Doorn
|
||||
|
||||
Eilenberg MacLane spaces
|
||||
-/
|
||||
|
||||
import homotopy.EM .spectrum
|
||||
|
||||
open eq is_equiv equiv is_conn is_trunc unit function pointed nat group algebra trunc trunc_index
|
||||
fiber prod pointed susp EM.ops
|
||||
|
||||
namespace EM
|
||||
|
||||
/- Functorial action of Eilenberg-Maclane spaces -/
|
||||
|
||||
definition pEM1_functor [constructor] {G H : Group} (φ : G →g H) : pEM1 G →* pEM1 H :=
|
||||
begin
|
||||
fconstructor,
|
||||
{ intro g, induction g,
|
||||
{ exact base },
|
||||
{ exact pth (φ g) },
|
||||
{ exact ap pth (respect_mul φ g h) ⬝ resp_mul (φ g) (φ h) }},
|
||||
{ reflexivity }
|
||||
end
|
||||
|
||||
definition EMadd1_functor [constructor] {G H : CommGroup} (φ : G →g H) (n : ℕ) :
|
||||
EMadd1 G n →* EMadd1 H n :=
|
||||
begin
|
||||
apply ptrunc_functor,
|
||||
apply iterate_psusp_functor,
|
||||
apply pEM1_functor,
|
||||
exact φ
|
||||
end
|
||||
|
||||
definition EM_functor [unfold 4] {G H : CommGroup} (φ : G →g H) (n : ℕ) :
|
||||
K G n →* K H n :=
|
||||
begin
|
||||
cases n with n,
|
||||
{ exact pmap_of_homomorphism φ },
|
||||
{ exact EMadd1_functor φ n }
|
||||
end
|
||||
|
||||
-- TODO: (K G n →* K H n) ≃ (G →g H)
|
||||
|
||||
/- Equivalence of Groups and pointed connected 1-truncated types -/
|
||||
|
||||
definition pEM1_pequiv_ptruncconntype (X : 1-Type*[0]) : pEM1 (π₁ X) ≃* X :=
|
||||
pEM1_pequiv_type
|
||||
|
||||
definition Group_equiv_ptruncconntype [constructor] : Group ≃ 1-Type*[0] :=
|
||||
equiv.MK (λG, ptruncconntype.mk (pEM1 G) _ pt !is_conn_pEM1)
|
||||
(λX, π₁ X)
|
||||
begin intro X, apply ptruncconntype_eq, esimp, exact pEM1_pequiv_type end
|
||||
begin intro G, apply eq_of_isomorphism, apply fundamental_group_pEM1 end
|
||||
|
||||
/- Higher EM-spaces -/
|
||||
|
||||
/- K(G, 2) is unique (see below for general case) -/
|
||||
definition loopn_EMadd1 (G : CommGroup) (n : ℕ) : Ω[succ n] (EMadd1 G n) ≃* pType_of_Group G :=
|
||||
begin
|
||||
refine _ ⬝e* loop_pEM1 G,
|
||||
cases n with n,
|
||||
{ refine !loop_ptrunc_pequiv ⬝e* _, refine ptrunc_pequiv _ _ _,
|
||||
apply is_trunc_eq, apply is_trunc_EM1},
|
||||
induction n with n IH,
|
||||
{ exact loop_pequiv_loop (loop_EM2 G)},
|
||||
refine _ ⬝e* IH,
|
||||
refine !homotopy_group_pequiv_loop_ptrunc⁻¹ᵉ* ⬝e* _ ⬝e* !homotopy_group_pequiv_loop_ptrunc,
|
||||
apply iterate_psusp_stability_pequiv,
|
||||
rexact add_mul_le_mul_add n 1 1
|
||||
end
|
||||
|
||||
definition EM2_map [unfold 7] {G : CommGroup} {X : Type*} (e : Ω[2] X ≃ G)
|
||||
(r : Π(p q : Ω[2] X), e (@concat (Ω X) idp idp idp p q) = e p * e q)
|
||||
[is_conn 1 X] [is_trunc 2 X] : EMadd1 G 1 → X :=
|
||||
begin
|
||||
change trunc 2 (susp (EM1 G)) → X, intro x,
|
||||
induction x with x, induction x with x,
|
||||
{ exact pt},
|
||||
{ exact pt},
|
||||
{ change carrier (Ω X), refine EM1_map e r x}
|
||||
end
|
||||
|
||||
definition pEM2_pmap [constructor] {G : CommGroup} {X : Type*} (e : Ω[2] X ≃ G)
|
||||
(r : Π(p q : Ω[2] X), e (@concat (Ω X) idp idp idp p q) = e p * e q)
|
||||
[is_conn 1 X] [is_trunc 2 X] : EMadd1 G 1 →* X :=
|
||||
pmap.mk (EM2_map e r) idp
|
||||
|
||||
definition loop_pEM2_pmap {G : CommGroup} {X : Type*} (e : Ω[2] X ≃ G)
|
||||
(r : Π(p q : Ω[2] X), e (@concat (Ω X) idp idp idp p q) = e p * e q)
|
||||
[is_conn 1 X] [is_trunc 2 X] :
|
||||
Ω→[2](pEM2_pmap e r) ~ e⁻¹ᵉ ∘ loopn_EMadd1 G 1 :=
|
||||
begin
|
||||
exact sorry
|
||||
end
|
||||
|
||||
-- TODO: make arguments in trivial_homotopy_group_of_is_trunc implicit
|
||||
attribute is_conn_EMadd1 is_trunc_EMadd1 [instance]
|
||||
definition pEM2_pequiv' {G : CommGroup} {X : Type*} (e : Ω[2] X ≃ G)
|
||||
(r : Π(p q : Ω[2] X), e (@concat (Ω X) idp idp idp p q) = e p * e q)
|
||||
[is_conn 1 X] [is_trunc 2 X] : EMadd1 G 1 ≃* X :=
|
||||
begin
|
||||
apply pequiv_of_pmap (pEM2_pmap e r),
|
||||
have is_conn 0 (EMadd1 G 1), from !is_conn_of_is_conn_succ,
|
||||
have is_trunc 2 (EMadd1 G 1), from !is_trunc_EMadd1,
|
||||
refine whitehead_principle_pointed 2 _ _,
|
||||
intro k, apply @nat.lt_by_cases k 2: intro H,
|
||||
{ apply @is_equiv_of_is_contr,
|
||||
do 2 exact trivial_homotopy_group_of_is_conn _ (le_of_lt_succ H)},
|
||||
{ cases H, esimp, apply is_equiv_trunc_functor, esimp,
|
||||
apply is_equiv.homotopy_closed, rotate 1,
|
||||
{ symmetry, exact loop_pEM2_pmap _ _},
|
||||
apply is_equiv_compose, apply pequiv.to_is_equiv, apply to_is_equiv},
|
||||
{ apply @is_equiv_of_is_contr,
|
||||
exact trivial_homotopy_group_of_is_trunc _ H,
|
||||
apply @trivial_homotopy_group_of_is_trunc, rotate 1, exact H, exact _inst_2}
|
||||
end
|
||||
|
||||
definition pEM2_pequiv {G : CommGroup} {X : Type*} (e : πg[1+1] X ≃g G)
|
||||
[is_conn 1 X] [is_trunc 2 X] : EMadd1 G 1 ≃* X :=
|
||||
begin
|
||||
have is_set (Ω[2] X), from !is_trunc_eq,
|
||||
apply pEM2_pequiv' (!trunc_equiv⁻¹ᵉ ⬝e equiv_of_isomorphism e),
|
||||
intro p q, esimp, exact to_respect_mul e (tr p) (tr q)
|
||||
end
|
||||
|
||||
-- general case
|
||||
definition EMadd1_map [unfold 8] {G : CommGroup} {X : Type*} {n : ℕ} (e : Ω[succ n] X ≃ G)
|
||||
(r : Π(p q : Ω (Ω[n] X)), e (p ⬝ q) = e p * e q)
|
||||
[H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : EMadd1 G n → X :=
|
||||
begin
|
||||
revert X e r H1 H2, induction n with n f: intro X e r H1 H2,
|
||||
{ change trunc 1 (EM1 G) → X, intro x, induction x with x, exact EM1_map e r x},
|
||||
change trunc (n.+2) (susp (iterate_psusp n (pEM1 G))) → X, intro x,
|
||||
induction x with x, induction x with x,
|
||||
{ exact pt},
|
||||
{ exact pt},
|
||||
change carrier (Ω X), refine f _ _ _ _ _ (tr x),
|
||||
{ refine _⁻¹ᵉ ⬝e e, apply equiv_of_pequiv, apply loopn_succ_in},
|
||||
exact abstract begin
|
||||
intro p q, refine _ ⬝ !r, apply ap e, esimp,
|
||||
apply inv_eq_of_eq,
|
||||
refine _⁻¹ ⬝ !loopn_succ_in_con⁻¹,
|
||||
exact to_right_inv (loopn_succ_in X (succ n)) p ◾ to_right_inv (loopn_succ_in X (succ n)) q
|
||||
end end
|
||||
end
|
||||
|
||||
definition pEMadd1_pmap [constructor] {G : CommGroup} {X : Type*} {n : ℕ} (e : Ω[succ n] X ≃ G)
|
||||
(r : Π(p q : Ω[succ n] X), e (@concat (Ω[n] X) pt pt pt p q) = e p * e q)
|
||||
[H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : EMadd1 G n →* X :=
|
||||
pmap.mk (EMadd1_map e r) begin cases n with n: reflexivity end
|
||||
|
||||
definition loopn_pEMadd1_pmap {G : CommGroup} {X : Type*} {n : ℕ} (e : Ω[succ n] X ≃ G)
|
||||
(r : Π(p q : Ω[succ n] X), e (@concat (Ω[n] X) pt pt pt p q) = e p * e q)
|
||||
[H1 : is_conn n X] [H2 : is_trunc (n.+1) X] :
|
||||
Ω→[succ n](pEMadd1_pmap e r) ~ e⁻¹ᵉ ∘ loopn_EMadd1 G n :=
|
||||
begin
|
||||
apply homotopy_of_inv_homotopy_pre (loopn_EMadd1 G n),
|
||||
intro g, esimp at *,
|
||||
revert X e r H1 H2, induction n with n IH: intro X e r H1 H2,
|
||||
{ refine !idp_con ⬝ _, refine !ap_compose'⁻¹ ⬝ _, apply elim_pth},
|
||||
{ replace (succ (succ n)) with ((succ n) + 1), rewrite [apn_succ],
|
||||
exact sorry}
|
||||
-- exact !idp_con ⬝ !elim_pth
|
||||
end
|
||||
|
||||
-- definition is_conn_of_le (n : ℕ₋₂) (A : Type) [is_conn (n.+1) A] :
|
||||
-- is_conn n A :=
|
||||
-- is_trunc_trunc_of_le A -2 (trunc_index.self_le_succ n)
|
||||
-- attribute is_conn_EMadd1 is_trunc_EMadd1 [instance]
|
||||
|
||||
definition pEMadd1_pequiv' {G : CommGroup} {X : Type*} {n : ℕ} (e : Ω[succ n] X ≃ G)
|
||||
(r : Π(p q : Ω[succ n] X), e (@concat (Ω[n] X) pt pt pt p q) = e p * e q)
|
||||
[H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : EMadd1 G n ≃* X :=
|
||||
begin
|
||||
apply pequiv_of_pmap (pEMadd1_pmap e r),
|
||||
have is_conn 0 (EMadd1 G n), from is_conn_of_le _ (zero_le_of_nat n),
|
||||
have is_trunc (n.+1) (EMadd1 G n), from !is_trunc_EMadd1,
|
||||
refine whitehead_principle_pointed (n.+1) _ _,
|
||||
intro k, apply @nat.lt_by_cases k (succ n): intro H,
|
||||
{ apply @is_equiv_of_is_contr,
|
||||
do 2 exact trivial_homotopy_group_of_is_conn _ (le_of_lt_succ H)},
|
||||
{ cases H, esimp, apply is_equiv_trunc_functor, esimp,
|
||||
apply is_equiv.homotopy_closed, rotate 1,
|
||||
{ symmetry, exact loopn_pEMadd1_pmap _ _},
|
||||
apply is_equiv_compose, apply pequiv.to_is_equiv},
|
||||
{ apply @is_equiv_of_is_contr,
|
||||
do 2 exact trivial_homotopy_group_of_is_trunc _ H}
|
||||
end
|
||||
|
||||
definition pEMadd1_pequiv {G : CommGroup} {X : Type*} {n : ℕ} (e : πg[n+1] X ≃g G)
|
||||
[H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : EMadd1 G n ≃* X :=
|
||||
begin
|
||||
have is_set (Ω[succ n] X), from !is_set_loopn,
|
||||
apply pEMadd1_pequiv' (!trunc_equiv⁻¹ᵉ ⬝e equiv_of_isomorphism e),
|
||||
intro p q, esimp, exact to_respect_mul e (tr p) (tr q)
|
||||
end
|
||||
|
||||
definition EM_pequiv_succ {G : CommGroup} {X : Type*} {n : ℕ} (e : πg[n+1] X ≃g G)
|
||||
[H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : EM G (succ n) ≃* X :=
|
||||
pEMadd1_pequiv e
|
||||
|
||||
definition EM_pequiv_zero {G : CommGroup} {X : Type*} (e : X ≃* pType_of_Group G) : EM G 0 ≃* X :=
|
||||
proof e⁻¹ᵉ* qed
|
||||
|
||||
/- uniqueness of K(G,n), method 2: -/
|
||||
|
||||
-- definition freudenthal_homotopy_group_pequiv (A : Type*) {n k : ℕ} [is_conn n A] (H : k ≤ 2 * n)
|
||||
-- : π[k + 1] (psusp A) ≃* π[k] A :=
|
||||
-- calc
|
||||
-- π[k + 1] (psusp A) ≃* π[k] (Ω (psusp A)) : homotopy_group_succ_in
|
||||
-- ... ≃* Ω[k] (ptrunc k (Ω (psusp A))) : homotopy_group_pequiv_loop_ptrunc k (Ω (psusp A))
|
||||
-- ... ≃* Ω[k] (ptrunc k A) : loopn_pequiv_loopn k (freudenthal_pequiv A H)
|
||||
-- ... ≃* π[k] A : (homotopy_group_pequiv_loop_ptrunc k A)⁻¹ᵉ*
|
||||
|
||||
definition iterate_psusp_succ_pequiv (n : ℕ) (A : Type*) :
|
||||
iterate_psusp (succ n) A ≃* iterate_psusp n (psusp A) :=
|
||||
begin
|
||||
induction n with n IH,
|
||||
{ reflexivity},
|
||||
{ exact psusp_equiv IH}
|
||||
end
|
||||
|
||||
definition is_conn_psusp [instance] (n : trunc_index) (A : Type*)
|
||||
[H : is_conn n A] : is_conn (n .+1) (psusp A) :=
|
||||
is_conn_susp n A
|
||||
|
||||
definition iterated_freudenthal_pequiv (A : Type*) {n k m : ℕ} [HA : is_conn n A] (H : k ≤ 2 * n)
|
||||
: ptrunc k A ≃* ptrunc k (Ω[m] (iterate_psusp m A)) :=
|
||||
begin
|
||||
revert A n k HA H, induction m with m IH: intro A n k HA H,
|
||||
{ reflexivity},
|
||||
{ have H2 : succ k ≤ 2 * succ n,
|
||||
from calc
|
||||
succ k ≤ succ (2 * n) : succ_le_succ H
|
||||
... ≤ 2 * succ n : self_le_succ,
|
||||
exact calc
|
||||
ptrunc k A ≃* ptrunc k (Ω (psusp A)) : freudenthal_pequiv A H
|
||||
... ≃* Ω (ptrunc (succ k) (psusp A)) : loop_ptrunc_pequiv
|
||||
... ≃* Ω (ptrunc (succ k) (Ω[m] (iterate_psusp m (psusp A)))) :
|
||||
loop_pequiv_loop (IH (psusp A) (succ n) (succ k) _ H2)
|
||||
... ≃* ptrunc k (Ω[succ m] (iterate_psusp m (psusp A))) : loop_ptrunc_pequiv
|
||||
... ≃* ptrunc k (Ω[succ m] (iterate_psusp (succ m) A)) :
|
||||
ptrunc_pequiv_ptrunc _ (loopn_pequiv_loopn _ !iterate_psusp_succ_pequiv)}
|
||||
end
|
||||
|
||||
definition pmap_eq_of_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) : f = g :=
|
||||
pmap_eq (to_homotopy p) (to_homotopy_pt p)⁻¹
|
||||
|
||||
definition pmap_equiv_pmap_right {A B : Type*} (C : Type*) (f : A ≃* B) : C →* A ≃ C →* B :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ exact pcompose f},
|
||||
{ exact pcompose f⁻¹ᵉ*},
|
||||
{ intro f, apply pmap_eq_of_phomotopy,
|
||||
exact !passoc⁻¹* ⬝* pwhisker_right _ !pright_inv ⬝* !pid_pcompose},
|
||||
{ intro f, apply pmap_eq_of_phomotopy,
|
||||
exact !passoc⁻¹* ⬝* pwhisker_right _ !pleft_inv ⬝* !pid_pcompose}
|
||||
end
|
||||
|
||||
definition iterate_psusp_adjoint_loopn [constructor] (X Y : Type*) (n : ℕ) :
|
||||
iterate_psusp n X →* Y ≃ X →* Ω[n] Y :=
|
||||
begin
|
||||
revert X Y, induction n with n IH: intro X Y,
|
||||
{ reflexivity},
|
||||
{ refine !susp_adjoint_loop ⬝e !IH ⬝e _, apply pmap_equiv_pmap_right,
|
||||
symmetry, apply loopn_succ_in}
|
||||
end
|
||||
|
||||
/- new method of uniqueness, define K(G,n+1) as the truncation of the suspension of K(G,n) -/
|
||||
|
||||
definition EMadd2 (G : CommGroup) (n : ℕ) : Type* := ptrunc (n.+2) (psusp (EMadd1 G n))
|
||||
|
||||
definition EMadd2_map [constructor] {G : CommGroup} {X : Type*} {n : ℕ} (e : Ω[n+2] X ≃ G)
|
||||
(r : Π(p q : Ω[n+2] X), e (@concat (Ω[n+1] X) pt pt pt p q) = e p * e q)
|
||||
[H1 : is_conn (n.+1) X] [H2 : is_trunc (n.+2) X] : EMadd2 G n → X :=
|
||||
begin
|
||||
intro x, induction x with x, induction x with x,
|
||||
{ exact pt },
|
||||
{ exact pt },
|
||||
{ refine EMadd1_map ((loopn_succ_in _ (n+1))⁻¹ᵉ ⬝e e) _ x,
|
||||
exact abstract begin
|
||||
intro p q, refine _ ⬝ !r, apply ap e, esimp,
|
||||
refine @inv_eq_of_eq _ _ (pequiv.to_equiv (loopn_succ_in X (n + 1))) _ _ _ _,
|
||||
refine _⁻¹ ⬝ !loopn_succ_in_con⁻¹,
|
||||
exact to_right_inv (loopn_succ_in X (succ n)) p ◾ to_right_inv (loopn_succ_in X (succ n)) q
|
||||
end end }
|
||||
end
|
||||
|
||||
-- -- general case
|
||||
-- definition EMadd1_map [unfold 8] {G : CommGroup} {X : Type*} {n : ℕ} (e : Ω[succ n] X ≃ G)
|
||||
-- (r : Π(p q : Ω (Ω[n] X)), e (p ⬝ q) = e p * e q)
|
||||
-- [H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : EMadd1 G n → X :=
|
||||
-- begin
|
||||
-- revert X e r H1 H2, induction n with n f: intro X e r H1 H2,
|
||||
-- { change trunc 1 (EM1 G) → X, intro x, induction x with x, exact EM1_map e r x},
|
||||
-- change trunc (n.+2) (susp (iterate_psusp n (pEM1 G))) → X, intro x,
|
||||
-- induction x with x, induction x with x,
|
||||
-- { exact pt},
|
||||
-- { exact pt},
|
||||
-- change carrier (Ω X), refine f _ _ _ _ _ (tr x),
|
||||
-- { refine _⁻¹ᵉ ⬝e e, apply equiv_of_pequiv, apply loopn_succ_in},
|
||||
-- exact abstract begin
|
||||
-- intro p q, refine _ ⬝ !r, apply ap e, esimp,
|
||||
-- apply inv_eq_of_eq,
|
||||
-- refine _⁻¹ ⬝ !loopn_succ_in_con⁻¹,
|
||||
-- exact to_right_inv (loopn_succ_in X (succ n)) p ◾ to_right_inv (loopn_succ_in X (succ n)) q
|
||||
-- end end
|
||||
-- end
|
||||
|
||||
end EM
|
||||
-- cohomology ∥ X → K(G,n) ∥
|
||||
-- reduced cohomology ∥ X →* K(G,n) ∥
|
||||
-- but we probably want to do this for any spectrum
|
|
@ -1,518 +0,0 @@
|
|||
/-
|
||||
Copyright (c) 2016 Floris van Doorn. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Authors: Floris van Doorn
|
||||
|
||||
Eilenberg MacLane spaces
|
||||
|
||||
This file replaces the file in the HoTT library
|
||||
-/
|
||||
|
||||
import hit.groupoid_quotient homotopy.hopf homotopy.freudenthal homotopy.homotopy_group
|
||||
..move_to_lib
|
||||
open algebra pointed nat eq category group is_trunc iso unit trunc equiv is_conn function is_equiv
|
||||
trunc_index
|
||||
|
||||
local attribute pType_of_Group [coercion]
|
||||
|
||||
namespace EMnew
|
||||
open groupoid_quotient
|
||||
|
||||
variables {G : Group}
|
||||
definition EM1' (G : Group) : Type :=
|
||||
groupoid_quotient (Groupoid_of_Group G)
|
||||
definition EM1 [constructor] (G : Group) : Type* :=
|
||||
pointed.MK (EM1' G) (elt star)
|
||||
|
||||
definition base : EM1' G := elt star
|
||||
definition pth : G → base = base := pth
|
||||
definition resp_mul (g h : G) : pth (g * h) = pth g ⬝ pth h := resp_comp h g
|
||||
definition resp_one : pth (1 : G) = idp :=
|
||||
resp_id star
|
||||
|
||||
definition resp_inv (g : G) : pth (g⁻¹) = (pth g)⁻¹ :=
|
||||
resp_inv g
|
||||
|
||||
local attribute pointed.MK pointed.carrier EM1 EM1' [reducible]
|
||||
protected definition rec {P : EM1' G → Type} [H : Π(x : EM1' G), is_trunc 1 (P x)]
|
||||
(Pb : P base) (Pp : Π(g : G), Pb =[pth g] Pb)
|
||||
(Pmul : Π(g h : G), change_path (resp_mul g h) (Pp (g * h)) = Pp g ⬝o Pp h) (x : EM1' G) : P x :=
|
||||
begin
|
||||
induction x,
|
||||
{ induction g, exact Pb},
|
||||
{ induction a, induction b, exact Pp f},
|
||||
{ induction a, induction b, induction c, exact Pmul f g}
|
||||
end
|
||||
|
||||
protected definition rec_on {P : EM1' G → Type} [H : Π(x : EM1' G), is_trunc 1 (P x)]
|
||||
(x : EM1' G) (Pb : P base) (Pp : Π(g : G), Pb =[pth g] Pb)
|
||||
(Pmul : Π(g h : G), change_path (resp_mul g h) (Pp (g * h)) = Pp g ⬝o Pp h) : P x :=
|
||||
EMnew.rec Pb Pp Pmul x
|
||||
|
||||
protected definition set_rec {P : EM1' G → Type} [H : Π(x : EM1' G), is_set (P x)]
|
||||
(Pb : P base) (Pp : Π(g : G), Pb =[pth g] Pb) (x : EM1' G) : P x :=
|
||||
EMnew.rec Pb Pp !center x
|
||||
|
||||
protected definition prop_rec {P : EM1' G → Type} [H : Π(x : EM1' G), is_prop (P x)]
|
||||
(Pb : P base) (x : EM1' G) : P x :=
|
||||
EMnew.rec Pb !center !center x
|
||||
|
||||
definition rec_pth {P : EM1' G → Type} [H : Π(x : EM1' G), is_trunc 1 (P x)]
|
||||
{Pb : P base} {Pp : Π(g : G), Pb =[pth g] Pb}
|
||||
(Pmul : Π(g h : G), change_path (resp_mul g h) (Pp (g * h)) = Pp g ⬝o Pp h)
|
||||
(g : G) : apd (EMnew.rec Pb Pp Pmul) (pth g) = Pp g :=
|
||||
proof !rec_pth qed
|
||||
|
||||
protected definition elim {P : Type} [is_trunc 1 P] (Pb : P) (Pp : Π(g : G), Pb = Pb)
|
||||
(Pmul : Π(g h : G), Pp (g * h) = Pp g ⬝ Pp h) (x : EM1' G) : P :=
|
||||
begin
|
||||
induction x,
|
||||
{ exact Pb},
|
||||
{ exact Pp f},
|
||||
{ exact Pmul f g}
|
||||
end
|
||||
|
||||
protected definition elim_on [reducible] {P : Type} [is_trunc 1 P] (x : EM1' G)
|
||||
(Pb : P) (Pp : G → Pb = Pb) (Pmul : Π(g h : G), Pp (g * h) = Pp g ⬝ Pp h) : P :=
|
||||
EMnew.elim Pb Pp Pmul x
|
||||
|
||||
protected definition set_elim [reducible] {P : Type} [is_set P] (Pb : P) (Pp : G → Pb = Pb)
|
||||
(x : EM1' G) : P :=
|
||||
EMnew.elim Pb Pp !center x
|
||||
|
||||
protected definition prop_elim [reducible] {P : Type} [is_prop P] (Pb : P) (x : EM1' G) : P :=
|
||||
EMnew.elim Pb !center !center x
|
||||
|
||||
definition elim_pth {P : Type} [is_trunc 1 P] {Pb : P} {Pp : G → Pb = Pb}
|
||||
(Pmul : Π(g h : G), Pp (g * h) = Pp g ⬝ Pp h) (g : G) : ap (EMnew.elim Pb Pp Pmul) (pth g) = Pp g :=
|
||||
proof !elim_pth qed
|
||||
|
||||
protected definition elim_set.{u} (Pb : Set.{u}) (Pp : Π(g : G), Pb ≃ Pb)
|
||||
(Pmul : Π(g h : G) (x : Pb), Pp (g * h) x = Pp h (Pp g x)) (x : EM1' G) : Set.{u} :=
|
||||
groupoid_quotient.elim_set (λu, Pb) (λu v, Pp) (λu v w g h, proof Pmul h g qed) x
|
||||
|
||||
theorem elim_set_pth {Pb : Set} {Pp : Π(g : G), Pb ≃ Pb}
|
||||
(Pmul : Π(g h : G) (x : Pb), Pp (g * h) x = Pp h (Pp g x)) (g : G) :
|
||||
transport (EMnew.elim_set Pb Pp Pmul) (pth g) = Pp g :=
|
||||
!elim_set_pth
|
||||
|
||||
end EMnew
|
||||
|
||||
attribute EMnew.base [constructor]
|
||||
attribute EMnew.rec EMnew.elim [unfold 7] [recursor 7]
|
||||
attribute EMnew.rec_on EMnew.elim_on [unfold 4]
|
||||
attribute EMnew.set_rec EMnew.set_elim [unfold 6]
|
||||
attribute EMnew.prop_rec EMnew.prop_elim EMnew.elim_set [unfold 5]
|
||||
|
||||
namespace EMnew
|
||||
open groupoid_quotient
|
||||
|
||||
variables (G : Group)
|
||||
definition base_eq_base_equiv : (base = base :> EM1 G) ≃ G :=
|
||||
!elt_eq_elt_equiv
|
||||
|
||||
definition fundamental_group_EM1 : π₁ (EM1 G) ≃g G :=
|
||||
begin
|
||||
fapply isomorphism_of_equiv,
|
||||
{ exact trunc_equiv_trunc 0 !base_eq_base_equiv ⬝e trunc_equiv 0 G},
|
||||
{ intros g h, induction g with p, induction h with q,
|
||||
exact encode_con p q}
|
||||
end
|
||||
|
||||
proposition is_trunc_EM1 [instance] : is_trunc 1 (EM1 G) :=
|
||||
!is_trunc_groupoid_quotient
|
||||
|
||||
proposition is_trunc_EM1' [instance] : is_trunc 1 (EM1' G) :=
|
||||
!is_trunc_groupoid_quotient
|
||||
|
||||
proposition is_conn_EM1' [instance] : is_conn 0 (EM1' G) :=
|
||||
by apply @is_conn_groupoid_quotient; esimp; exact _
|
||||
|
||||
proposition is_conn_EM1 [instance] : is_conn 0 (EM1 G) :=
|
||||
is_conn_EM1' G
|
||||
|
||||
variable {G}
|
||||
definition EM1_map [unfold 7] {X : Type*} (e : G → Ω X)
|
||||
(r : Πg h, e (g * h) = e g ⬝ e h) [is_conn 0 X] [is_trunc 1 X] : EM1 G → X :=
|
||||
begin
|
||||
intro x, induction x using EMnew.elim,
|
||||
{ exact Point X },
|
||||
{ exact e g },
|
||||
{ exact r g h }
|
||||
end
|
||||
|
||||
/- Uniqueness of K(G, 1) -/
|
||||
|
||||
definition EM1_pmap [constructor] {X : Type*} (e : G → Ω X)
|
||||
(r : Πg h, e (g * h) = e g ⬝ e h) [is_conn 0 X] [is_trunc 1 X] : EM1 G →* X :=
|
||||
pmap.mk (EM1_map e r) idp
|
||||
|
||||
variable (G)
|
||||
definition loop_EM1 [constructor] : G ≃* Ω (EM1 G) :=
|
||||
(pequiv_of_equiv (base_eq_base_equiv G) idp)⁻¹ᵉ*
|
||||
|
||||
variable {G}
|
||||
definition loop_EM1_pmap {X : Type*} (e : G →* Ω X)
|
||||
(r : Πg h, e (g * h) = e g ⬝ e h) [is_conn 0 X] [is_trunc 1 X] :
|
||||
Ω→(EM1_pmap e r) ∘* loop_EM1 G ~* e :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ intro g, refine !idp_con ⬝ elim_pth r g },
|
||||
{ apply is_set.elim }
|
||||
end
|
||||
|
||||
definition EM1_pequiv'.{u} {G : Group.{u}} {X : pType.{u}} (e : G ≃* Ω X)
|
||||
(r : Πg h, e (g * h) = e g ⬝ e h) [is_conn 0 X] [is_trunc 1 X] : EM1 G ≃* X :=
|
||||
begin
|
||||
apply pequiv_of_pmap (EM1_pmap e r),
|
||||
apply whitehead_principle_pointed 1,
|
||||
intro k, cases k with k,
|
||||
{ apply @is_equiv_of_is_contr,
|
||||
all_goals (esimp; exact _)},
|
||||
{ cases k with k,
|
||||
{ apply is_equiv_trunc_functor, esimp,
|
||||
apply is_equiv.homotopy_closed, rotate 1,
|
||||
{ symmetry, exact phomotopy_pinv_right_of_phomotopy (loop_EM1_pmap _ _) },
|
||||
apply is_equiv_compose e },
|
||||
{ apply @is_equiv_of_is_contr,
|
||||
do 2 exact trivial_homotopy_group_of_is_trunc _ (succ_lt_succ !zero_lt_succ)}}
|
||||
end
|
||||
|
||||
definition EM1_pequiv.{u} {G : Group.{u}} {X : pType.{u}} (e : G ≃g π₁ X)
|
||||
[is_conn 0 X] [is_trunc 1 X] : EM1 G ≃* X :=
|
||||
begin
|
||||
apply EM1_pequiv' (pequiv_of_isomorphism e ⬝e* ptrunc_pequiv _ _ _),
|
||||
refine is_equiv.preserve_binary_of_inv_preserve _ mul concat _,
|
||||
intro p q,
|
||||
exact to_respect_mul e⁻¹ᵍ (tr p) (tr q)
|
||||
end
|
||||
|
||||
definition EM1_pequiv_type (X : Type*) [is_conn 0 X] [is_trunc 1 X] : EM1 (π₁ X) ≃* X :=
|
||||
EM1_pequiv !isomorphism.refl
|
||||
|
||||
end EMnew
|
||||
|
||||
open hopf new_susp susp
|
||||
namespace EMnew
|
||||
/- EM1 G is an h-space if G is an abelian group. This allows us to construct K(G,n) for n ≥ 2 -/
|
||||
variables {G : CommGroup} (n : ℕ)
|
||||
|
||||
definition EM1_mul [unfold 2 3] (x x' : EM1' G) : EM1' G :=
|
||||
begin
|
||||
induction x,
|
||||
{ exact x'},
|
||||
{ induction x' using EMnew.set_rec,
|
||||
{ exact pth g},
|
||||
{ exact abstract begin apply loop_pathover, apply square_of_eq,
|
||||
refine !resp_mul⁻¹ ⬝ _ ⬝ !resp_mul,
|
||||
exact ap pth !mul.comm end end}},
|
||||
{ refine EMnew.prop_rec _ x', apply resp_mul }
|
||||
end
|
||||
|
||||
variable (G)
|
||||
definition EM1_mul_one (x : EM1' G) : EM1_mul x base = x :=
|
||||
begin
|
||||
induction x using EMnew.set_rec,
|
||||
{ reflexivity},
|
||||
{ apply eq_pathover_id_right, apply hdeg_square, refine EMnew.elim_pth _ g}
|
||||
end
|
||||
|
||||
definition h_space_EM1 [constructor] [instance] : h_space (EM1' G) :=
|
||||
begin
|
||||
fapply h_space.mk,
|
||||
{ exact EM1_mul},
|
||||
{ exact base},
|
||||
{ intro x', reflexivity},
|
||||
{ apply EM1_mul_one}
|
||||
end
|
||||
|
||||
/- K(G, n+1) -/
|
||||
definition EMadd1 : ℕ → Type*
|
||||
| 0 := EM1 G
|
||||
| (n+1) := ptrunc (n+2) (psusp (EMadd1 n))
|
||||
|
||||
definition EMadd1_succ [unfold_full] (n : ℕ) :
|
||||
EMadd1 G (succ n) = ptrunc (n.+2) (psusp (EMadd1 G n)) :=
|
||||
idp
|
||||
|
||||
definition loop_EM2 : Ω[1] (EMadd1 G 1) ≃* EM1 G :=
|
||||
hopf.delooping (EM1' G) idp
|
||||
|
||||
definition is_conn_EMadd1 [instance] (n : ℕ) : is_conn n (EMadd1 G n) :=
|
||||
begin
|
||||
induction n with n IH,
|
||||
{ apply is_conn_EM1 },
|
||||
{ rewrite EMadd1_succ, esimp, exact _ }
|
||||
end
|
||||
|
||||
definition is_trunc_EMadd1 [instance] (n : ℕ) : is_trunc (n+1) (EMadd1 G n) :=
|
||||
begin
|
||||
cases n with n,
|
||||
{ apply is_trunc_EM1 },
|
||||
{ apply is_trunc_trunc }
|
||||
end
|
||||
|
||||
/- loops of an EM-space -/
|
||||
definition loop_EMadd1 (n : ℕ) : EMadd1 G n ≃* Ω (EMadd1 G (succ n)) :=
|
||||
begin
|
||||
cases n with n,
|
||||
{ exact !loop_EM2⁻¹ᵉ* },
|
||||
{ rewrite [EMadd1_succ G (succ n)],
|
||||
refine (ptrunc_pequiv (succ n + 1) _ _)⁻¹ᵉ* ⬝e* _ ⬝e* (loop_ptrunc_pequiv _ _)⁻¹ᵉ*,
|
||||
have succ n + 1 ≤ 2 * succ n, from add_mul_le_mul_add n 1 1,
|
||||
refine freudenthal_pequiv _ this }
|
||||
end
|
||||
|
||||
definition loopn_EMadd1_pequiv_EM1 (G : CommGroup) (n : ℕ) : EM1 G ≃* Ω[n] (EMadd1 G n) :=
|
||||
begin
|
||||
induction n with n e,
|
||||
{ reflexivity },
|
||||
{ refine _ ⬝e* !loopn_succ_in⁻¹ᵉ*,
|
||||
refine _ ⬝e* loopn_pequiv_loopn n !loop_EMadd1,
|
||||
exact e }
|
||||
end
|
||||
|
||||
-- use loopn_EMadd1_pequiv_EM1 in this definition?
|
||||
definition loopn_EMadd1 (G : CommGroup) (n : ℕ) : G ≃* Ω[succ n] (EMadd1 G n) :=
|
||||
begin
|
||||
induction n with n e,
|
||||
{ apply loop_EM1 },
|
||||
{ refine _ ⬝e* !loopn_succ_in⁻¹ᵉ*,
|
||||
refine _ ⬝e* loopn_pequiv_loopn (succ n) !loop_EMadd1,
|
||||
exact e }
|
||||
end
|
||||
|
||||
definition loopn_EMadd1_succ [unfold_full] (G : CommGroup) (n : ℕ) : loopn_EMadd1 G (succ n) ~*
|
||||
!loopn_succ_in⁻¹ᵉ* ∘* apn (succ n) !loop_EMadd1 ∘* loopn_EMadd1 G n :=
|
||||
by reflexivity
|
||||
|
||||
definition EM_up {G : CommGroup} {X : Type*} {n : ℕ} (e : Ω[succ (succ n)] X ≃* G)
|
||||
: Ω[succ n] (Ω X) ≃* G :=
|
||||
!loopn_succ_in⁻¹ᵉ* ⬝e* e
|
||||
|
||||
definition is_homomorphism_EM_up {G : CommGroup} {X : Type*} {n : ℕ}
|
||||
(e : Ω[succ (succ n)] X ≃* G)
|
||||
(r : Π(p q : Ω[succ (succ n)] X), e (p ⬝ q) = e p * e q)
|
||||
(p q : Ω[succ n] (Ω X)) : EM_up e (p ⬝ q) = EM_up e p * EM_up e q :=
|
||||
begin
|
||||
refine _ ⬝ !r, apply ap e, esimp, apply apn_con
|
||||
end
|
||||
|
||||
definition EMadd1_pmap [unfold 8] {G : CommGroup} {X : Type*} (n : ℕ)
|
||||
(e : Ω[succ n] X ≃* G)
|
||||
(r : Πp q, e (p ⬝ q) = e p * e q)
|
||||
[H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : EMadd1 G n →* X :=
|
||||
begin
|
||||
revert X e r H1 H2, induction n with n f: intro X e r H1 H2,
|
||||
{ exact EM1_pmap e⁻¹ᵉ* (equiv.inv_preserve_binary e concat mul r) },
|
||||
rewrite [EMadd1_succ],
|
||||
exact ptrunc.elim ((succ n).+1)
|
||||
(psusp.elim (f _ (EM_up e) (is_homomorphism_EM_up e r) _ _)),
|
||||
end
|
||||
|
||||
definition EMadd1_pmap_succ {G : CommGroup} {X : Type*} (n : ℕ) (e : Ω[succ (succ n)] X ≃* G)
|
||||
r [H1 : is_conn (succ n) X] [H2 : is_trunc ((succ n).+1) X] : EMadd1_pmap (succ n) e r =
|
||||
ptrunc.elim ((succ n).+1) (psusp.elim (EMadd1_pmap n (EM_up e) (is_homomorphism_EM_up e r))) :=
|
||||
by reflexivity
|
||||
|
||||
definition loop_EMadd1_pmap {G : CommGroup} {X : Type*} {n : ℕ} (e : Ω[succ (succ n)] X ≃* G)
|
||||
(r : Πp q, e (p ⬝ q) = e p * e q)
|
||||
[H1 : is_conn (succ n) X] [H2 : is_trunc ((succ n).+1) X] :
|
||||
Ω→(EMadd1_pmap (succ n) e r) ∘* loop_EMadd1 G n ~*
|
||||
EMadd1_pmap n (EM_up e) (is_homomorphism_EM_up e r) :=
|
||||
begin
|
||||
cases n with n,
|
||||
{ apply hopf_delooping_elim },
|
||||
{ refine !passoc⁻¹* ⬝* _,
|
||||
rewrite [EMadd1_pmap_succ (succ n)],
|
||||
refine pwhisker_right _ !ap1_ptrunc_elim ⬝* _,
|
||||
refine !passoc⁻¹* ⬝* _,
|
||||
refine pwhisker_right _ (ptrunc_elim_freudenthal_pequiv
|
||||
(succ n) (succ (succ n)) (add_mul_le_mul_add n 1 1) _) ⬝* _,
|
||||
reflexivity }
|
||||
end
|
||||
|
||||
definition loopn_EMadd1_pmap' {G : CommGroup} {X : Type*} {n : ℕ} (e : Ω[succ n] X ≃* G)
|
||||
(r : Πp q, e (p ⬝ q) = e p * e q)
|
||||
[H1 : is_conn n X] [H2 : is_trunc (n.+1) X] :
|
||||
Ω→[succ n](EMadd1_pmap n e r) ∘* loopn_EMadd1 G n ~* e⁻¹ᵉ* :=
|
||||
begin
|
||||
revert X e r H1 H2, induction n with n IH: intro X e r H1 H2,
|
||||
{ apply loop_EM1_pmap },
|
||||
refine pwhisker_left _ !loopn_EMadd1_succ ⬝* _,
|
||||
refine !passoc⁻¹* ⬝* _,
|
||||
refine pwhisker_right _ !loopn_succ_in_inv_natural ⬝* _,
|
||||
refine !passoc ⬝* _,
|
||||
refine pwhisker_left _ (!passoc⁻¹* ⬝*
|
||||
pwhisker_right _ (!apn_pcompose⁻¹* ⬝* apn_phomotopy _ !loop_EMadd1_pmap) ⬝*
|
||||
!IH ⬝* !pinv_trans_pinv_left) ⬝* _,
|
||||
apply pinv_pcompose_cancel_left
|
||||
end
|
||||
|
||||
definition EMadd1_pequiv' {G : CommGroup} {X : Type*} (n : ℕ) (e : Ω[succ n] X ≃* G)
|
||||
(r : Π(p q : Ω[succ n] X), e (p ⬝ q) = e p * e q)
|
||||
[H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : EMadd1 G n ≃* X :=
|
||||
begin
|
||||
apply pequiv_of_pmap (EMadd1_pmap n e r),
|
||||
have is_conn 0 (EMadd1 G n), from is_conn_of_le _ (zero_le_of_nat n),
|
||||
have is_trunc (n.+1) (EMadd1 G n), from !is_trunc_EMadd1,
|
||||
refine whitehead_principle_pointed (n.+1) _ _,
|
||||
intro k, apply @nat.lt_by_cases k (succ n): intro H,
|
||||
{ apply @is_equiv_of_is_contr,
|
||||
do 2 exact trivial_homotopy_group_of_is_conn _ (le_of_lt_succ H)},
|
||||
{ cases H, esimp, apply is_equiv_trunc_functor, esimp,
|
||||
apply is_equiv.homotopy_closed, rotate 1,
|
||||
{ symmetry, exact phomotopy_pinv_right_of_phomotopy (loopn_EMadd1_pmap' _ _) },
|
||||
apply is_equiv_compose (e⁻¹ᵉ*)},
|
||||
{ apply @is_equiv_of_is_contr,
|
||||
do 2 exact trivial_homotopy_group_of_is_trunc _ H}
|
||||
end
|
||||
|
||||
definition EMadd1_pequiv {G : CommGroup} {X : Type*} (n : ℕ) (e : πg[n+1] X ≃g G)
|
||||
[H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : EMadd1 G n ≃* X :=
|
||||
begin
|
||||
have is_set (Ω[succ n] X), from !is_set_loopn,
|
||||
apply EMadd1_pequiv' n ((ptrunc_pequiv _ _ _)⁻¹ᵉ* ⬝e* pequiv_of_isomorphism e),
|
||||
intro p q, esimp, exact to_respect_mul e (tr p) (tr q)
|
||||
end
|
||||
|
||||
definition EMadd1_pequiv_succ {G : CommGroup} {X : Type*} (n : ℕ) (e : πag[n+2] X ≃g G)
|
||||
[H1 : is_conn (n.+1) X] [H2 : is_trunc (n.+2) X] : EMadd1 G (succ n) ≃* X :=
|
||||
EMadd1_pequiv (succ n) e
|
||||
|
||||
definition ghomotopy_group_EMadd1 (n : ℕ) : πg[n+1] (EMadd1 G n) ≃g G :=
|
||||
begin
|
||||
change π₁ (Ω[n] (EMadd1 G n)) ≃g G,
|
||||
refine homotopy_group_isomorphism_of_pequiv 0 (loopn_EMadd1_pequiv_EM1 G n)⁻¹ᵉ* ⬝g _,
|
||||
apply fundamental_group_EM1,
|
||||
end
|
||||
|
||||
definition EMadd1_pequiv_type (X : Type*) (n : ℕ) [is_conn (n+1) X] [is_trunc (n+1+1) X]
|
||||
: EMadd1 (πag[n+2] X) (succ n) ≃* X :=
|
||||
EMadd1_pequiv_succ n !isomorphism.refl
|
||||
|
||||
/- K(G, n) -/
|
||||
definition EM (G : CommGroup) : ℕ → Type*
|
||||
| 0 := G
|
||||
| (k+1) := EMadd1 G k
|
||||
|
||||
namespace ops
|
||||
abbreviation K := @EM
|
||||
end ops
|
||||
open ops
|
||||
|
||||
definition homotopy_group_EM (n : ℕ) : π[n] (EM G n) ≃* G :=
|
||||
begin
|
||||
cases n with n,
|
||||
{ rexact ptrunc_pequiv 0 (G) _},
|
||||
{ exact pequiv_of_isomorphism (ghomotopy_group_EMadd1 G n)}
|
||||
end
|
||||
|
||||
definition ghomotopy_group_EM (n : ℕ) : πg[n+1] (EM G (n+1)) ≃g G :=
|
||||
ghomotopy_group_EMadd1 G n
|
||||
|
||||
definition is_conn_EM [instance] (n : ℕ) : is_conn (n.-1) (EM G n) :=
|
||||
begin
|
||||
cases n with n,
|
||||
{ apply is_conn_minus_one, apply tr, unfold [EM], exact 1},
|
||||
{ apply is_conn_EMadd1}
|
||||
end
|
||||
|
||||
definition is_conn_EM_succ [instance] (n : ℕ) : is_conn n (EM G (succ n)) :=
|
||||
is_conn_EM G (succ n)
|
||||
|
||||
definition is_trunc_EM [instance] (n : ℕ) : is_trunc n (EM G n) :=
|
||||
begin
|
||||
cases n with n,
|
||||
{ unfold [EM], apply semigroup.is_set_carrier},
|
||||
{ apply is_trunc_EMadd1}
|
||||
end
|
||||
|
||||
definition loop_EM (n : ℕ) : Ω (K G (succ n)) ≃* K G n :=
|
||||
begin
|
||||
cases n with n,
|
||||
{ refine _ ⬝e* pequiv_of_isomorphism (fundamental_group_EM1 G),
|
||||
symmetry, apply ptrunc_pequiv, exact _},
|
||||
{ exact !loop_EMadd1⁻¹ᵉ* }
|
||||
end
|
||||
|
||||
open circle int
|
||||
definition EM_pequiv_circle : K agℤ 1 ≃* S¹* :=
|
||||
EM1_pequiv fundamental_group_of_circle⁻¹ᵍ
|
||||
|
||||
/- Functorial action of Eilenberg-Maclane spaces -/
|
||||
|
||||
definition EM1_functor [constructor] {G H : Group} (φ : G →g H) : EM1 G →* EM1 H :=
|
||||
begin
|
||||
fconstructor,
|
||||
{ intro g, induction g,
|
||||
{ exact base },
|
||||
{ exact pth (φ g) },
|
||||
{ exact ap pth (to_respect_mul φ g h) ⬝ resp_mul (φ g) (φ h) }},
|
||||
{ reflexivity }
|
||||
end
|
||||
|
||||
definition EMadd1_functor [constructor] {G H : CommGroup} (φ : G →g H) (n : ℕ) :
|
||||
EMadd1 G n →* EMadd1 H n :=
|
||||
begin
|
||||
induction n with n ψ,
|
||||
{ exact EM1_functor φ },
|
||||
{ apply ptrunc_functor, apply psusp_functor, exact ψ }
|
||||
end
|
||||
|
||||
definition EM_functor [unfold 4] {G H : CommGroup} (φ : G →g H) (n : ℕ) :
|
||||
K G n →* K H n :=
|
||||
begin
|
||||
cases n with n,
|
||||
{ exact pmap_of_homomorphism φ },
|
||||
{ exact EMadd1_functor φ n }
|
||||
end
|
||||
|
||||
-- TODO: (K G n →* K H n) ≃ (G →g H)
|
||||
|
||||
/- Equivalence of Groups and pointed connected 1-truncated types -/
|
||||
|
||||
definition ptruncconntype10_pequiv (X Y : 1-Type*[0]) (e : π₁ X ≃g π₁ Y) : X ≃* Y :=
|
||||
(EM1_pequiv !isomorphism.refl)⁻¹ᵉ* ⬝e* EM1_pequiv e
|
||||
|
||||
definition EM1_pequiv_ptruncconntype10 (X : 1-Type*[0]) : EM1 (π₁ X) ≃* X :=
|
||||
EM1_pequiv_type X
|
||||
|
||||
definition Group_equiv_ptruncconntype10 [constructor] : Group ≃ 1-Type*[0] :=
|
||||
equiv.MK (λG, ptruncconntype.mk (EM1 G) _ pt !is_conn_EM1)
|
||||
(λX, π₁ X)
|
||||
begin intro X, apply ptruncconntype_eq, esimp, exact EM1_pequiv_type X end
|
||||
begin intro G, apply eq_of_isomorphism, apply fundamental_group_EM1 end
|
||||
|
||||
/- Equivalence of CommGroups and pointed n-connected (n+1)-truncated types (n ≥ 1) -/
|
||||
|
||||
open trunc_index
|
||||
definition ptruncconntype_pequiv : Π(n : ℕ) (X Y : (n.+1)-Type*[n])
|
||||
(e : πg[n+1] X ≃g πg[n+1] Y), X ≃* Y
|
||||
| 0 X Y e := ptruncconntype10_pequiv X Y e
|
||||
| (succ n) X Y e :=
|
||||
begin
|
||||
refine (EMadd1_pequiv_succ n _)⁻¹ᵉ* ⬝e* EMadd1_pequiv_succ n !isomorphism.refl,
|
||||
exact e
|
||||
end
|
||||
|
||||
definition EM1_pequiv_ptruncconntype (n : ℕ) (X : (n+1+1)-Type*[n+1]) :
|
||||
EMadd1 (πag[n+2] X) (succ n) ≃* X :=
|
||||
EMadd1_pequiv_type X n
|
||||
|
||||
definition CommGroup_equiv_ptruncconntype' [constructor] (n : ℕ) :
|
||||
CommGroup ≃ (n + 1 + 1)-Type*[n+1] :=
|
||||
equiv.MK
|
||||
(λG, ptruncconntype.mk (EMadd1 G (n+1)) _ pt _)
|
||||
(λX, πag[n+2] X)
|
||||
begin intro X, apply ptruncconntype_eq, apply EMadd1_pequiv_type end
|
||||
begin intro G, apply CommGroup_eq_of_isomorphism, exact ghomotopy_group_EMadd1 G (n+1) end
|
||||
|
||||
definition CommGroup_equiv_ptruncconntype [constructor] (n : ℕ) :
|
||||
CommGroup ≃ (n.+2)-Type*[n.+1] :=
|
||||
CommGroup_equiv_ptruncconntype' n
|
||||
|
||||
print axioms CommGroup_equiv_ptruncconntype
|
||||
|
||||
end EMnew
|
|
@ -6,29 +6,29 @@ Authors: Floris van Doorn
|
|||
Reduced cohomology
|
||||
-/
|
||||
|
||||
import .EM algebra.arrow_group .spectrum
|
||||
import algebra.arrow_group .spectrum homotopy.EM
|
||||
|
||||
open eq spectrum int trunc pointed EM group algebra circle sphere nat EM.ops
|
||||
|
||||
definition EM_spectrum /-[constructor]-/ (G : CommGroup) : spectrum :=
|
||||
definition EM_spectrum /-[constructor]-/ (G : AbGroup) : spectrum :=
|
||||
spectrum.Mk (K G) (λn, (loop_EM G n)⁻¹ᵉ*)
|
||||
|
||||
definition cohomology (X : Type*) (Y : spectrum) (n : ℤ) : CommGroup :=
|
||||
CommGroup_pmap X (πag[2] (Y (2+n)))
|
||||
definition cohomology (X : Type*) (Y : spectrum) (n : ℤ) : AbGroup :=
|
||||
AbGroup_pmap X (πag[2] (Y (2+n)))
|
||||
|
||||
definition ordinary_cohomology [reducible] (X : Type*) (G : CommGroup) (n : ℤ) : CommGroup :=
|
||||
definition ordinary_cohomology [reducible] (X : Type*) (G : AbGroup) (n : ℤ) : AbGroup :=
|
||||
cohomology X (EM_spectrum G) n
|
||||
|
||||
definition ordinary_cohomology_Z [reducible] (X : Type*) (n : ℤ) : CommGroup :=
|
||||
definition ordinary_cohomology_Z [reducible] (X : Type*) (n : ℤ) : AbGroup :=
|
||||
ordinary_cohomology X agℤ n
|
||||
|
||||
notation `H^` n `[`:0 X:0 `, ` Y:0 `]`:0 := cohomology X Y n
|
||||
notation `H^` n `[`:0 X:0 `]`:0 := ordinary_cohomology_Z X n
|
||||
|
||||
check H^3[S¹*,EM_spectrum agℤ]
|
||||
check H^3[S¹*]
|
||||
-- check H^3[S¹*,EM_spectrum agℤ]
|
||||
-- check H^3[S¹*]
|
||||
|
||||
definition unpointed_cohomology (X : Type) (Y : spectrum) (n : ℤ) : CommGroup :=
|
||||
definition unpointed_cohomology (X : Type) (Y : spectrum) (n : ℤ) : AbGroup :=
|
||||
cohomology X₊ Y n
|
||||
|
||||
definition cohomology_homomorphism [constructor] {X X' : Type*} (f : X' →* X) (Y : spectrum)
|
||||
|
|
|
@ -55,7 +55,7 @@ namespace sphere
|
|||
|
||||
definition deg_id (n : ℕ) [H : is_succ n] : deg (pid (S* n)) = (1 : ℤ) :=
|
||||
by induction H with n;
|
||||
exact ap (πnSn n) (phomotopy_group_functor_pid (succ n) (S* (succ n)) (tr surf)) ⬝ πnSn_surf n
|
||||
exact ap (πnSn n) (homotopy_group_functor_pid (succ n) (S* (succ n)) (tr surf)) ⬝ πnSn_surf n
|
||||
|
||||
definition deg_phomotopy {n : ℕ} [H : is_succ n] {f g : S* n →* S* n} (p : f ~* g) :
|
||||
deg f = deg g :=
|
||||
|
|
|
@ -175,7 +175,7 @@ namespace homotopy
|
|||
apply trunc.rec,
|
||||
intro a',
|
||||
apply pathover_of_tr_eq,
|
||||
rewrite [transport_eq_Fr,idp_con],
|
||||
rewrite [eq_transport_Fr,idp_con],
|
||||
revert H, induction n with [n, IH],
|
||||
{ intro H, apply is_prop.elim },
|
||||
{ intros H,
|
||||
|
|
|
@ -1,181 +1,9 @@
|
|||
-- Authors: Floris van Doorn
|
||||
|
||||
/-
|
||||
In this file we define the smash type. This is the cofiber of the map
|
||||
wedge A B → A × B
|
||||
However, we define it (equivalently) as the pushout of the maps A + B → 2 and A + B → A × B.
|
||||
-/
|
||||
|
||||
import homotopy.circle homotopy.join types.pointed homotopy.cofiber ..move_to_lib
|
||||
import homotopy.smash
|
||||
|
||||
open bool pointed eq equiv is_equiv sum bool prod unit circle cofiber prod.ops wedge
|
||||
|
||||
namespace smash
|
||||
|
||||
variables {A B : Type*}
|
||||
|
||||
section
|
||||
open pushout
|
||||
|
||||
definition prod_of_sum [unfold 3] (u : A + B) : A × B :=
|
||||
by induction u with a b; exact (a, pt); exact (pt, b)
|
||||
|
||||
definition bool_of_sum [unfold 3] (u : A + B) : bool :=
|
||||
by induction u; exact ff; exact tt
|
||||
|
||||
definition smash' (A B : Type*) : Type := pushout (@prod_of_sum A B) (@bool_of_sum A B)
|
||||
protected definition mk (a : A) (b : B) : smash' A B := inl (a, b)
|
||||
|
||||
definition pointed_smash' [instance] [constructor] (A B : Type*) : pointed (smash' A B) :=
|
||||
pointed.mk (smash.mk pt pt)
|
||||
definition smash [constructor] (A B : Type*) : Type* :=
|
||||
pointed.mk' (smash' A B)
|
||||
|
||||
definition auxl : smash A B := inr ff
|
||||
definition auxr : smash A B := inr tt
|
||||
definition gluel (a : A) : smash.mk a pt = auxl :> smash A B := glue (inl a)
|
||||
definition gluer (b : B) : smash.mk pt b = auxr :> smash A B := glue (inr b)
|
||||
|
||||
end
|
||||
|
||||
definition gluel' (a a' : A) : smash.mk a pt = smash.mk a' pt :> smash A B :=
|
||||
gluel a ⬝ (gluel a')⁻¹
|
||||
definition gluer' (b b' : B) : smash.mk pt b = smash.mk pt b' :> smash A B :=
|
||||
gluer b ⬝ (gluer b')⁻¹
|
||||
definition glue (a : A) (b : B) : smash.mk a pt = smash.mk pt b :=
|
||||
gluel' a pt ⬝ gluer' pt b
|
||||
|
||||
definition glue_pt_left (b : B) : glue (Point A) b = gluer' pt b :=
|
||||
whisker_right !con.right_inv _ ⬝ !idp_con
|
||||
|
||||
definition glue_pt_right (a : A) : glue a (Point B) = gluel' a pt :=
|
||||
proof whisker_left _ !con.right_inv qed
|
||||
|
||||
definition ap_mk_left {a a' : A} (p : a = a') : ap (λa, smash.mk a (Point B)) p = gluel' a a' :=
|
||||
by induction p; exact !con.right_inv⁻¹
|
||||
|
||||
definition ap_mk_right {b b' : B} (p : b = b') : ap (smash.mk (Point A)) p = gluer' b b' :=
|
||||
by induction p; exact !con.right_inv⁻¹
|
||||
|
||||
protected definition rec {P : smash A B → Type} (Pmk : Πa b, P (smash.mk a b))
|
||||
(Pl : P auxl) (Pr : P auxr) (Pgl : Πa, Pmk a pt =[gluel a] Pl)
|
||||
(Pgr : Πb, Pmk pt b =[gluer b] Pr) (x : smash' A B) : P x :=
|
||||
begin
|
||||
induction x with x b u,
|
||||
{ induction x with a b, exact Pmk a b },
|
||||
{ induction b, exact Pl, exact Pr },
|
||||
{ induction u: esimp,
|
||||
{ apply Pgl },
|
||||
{ apply Pgr }}
|
||||
end
|
||||
|
||||
-- a rec which is easier to prove, but with worse computational properties
|
||||
protected definition rec' {P : smash A B → Type} (Pmk : Πa b, P (smash.mk a b))
|
||||
(Pg : Πa b, Pmk a pt =[glue a b] Pmk pt b) (x : smash' A B) : P x :=
|
||||
begin
|
||||
induction x using smash.rec,
|
||||
{ apply Pmk },
|
||||
{ exact gluel pt ▸ Pmk pt pt },
|
||||
{ exact gluer pt ▸ Pmk pt pt },
|
||||
{ refine change_path _ (Pg a pt ⬝o !pathover_tr),
|
||||
refine whisker_right !glue_pt_right _ ⬝ _, esimp, refine !con.assoc ⬝ _,
|
||||
apply whisker_left, apply con.left_inv },
|
||||
{ refine change_path _ ((Pg pt b)⁻¹ᵒ ⬝o !pathover_tr),
|
||||
refine whisker_right !glue_pt_left⁻² _ ⬝ _,
|
||||
refine whisker_right !inv_con_inv_right _ ⬝ _, refine !con.assoc ⬝ _,
|
||||
apply whisker_left, apply con.left_inv }
|
||||
end
|
||||
|
||||
theorem rec_gluel {P : smash A B → Type} {Pmk : Πa b, P (smash.mk a b)}
|
||||
{Pl : P auxl} {Pr : P auxr} (Pgl : Πa, Pmk a pt =[gluel a] Pl)
|
||||
(Pgr : Πb, Pmk pt b =[gluer b] Pr) (a : A) :
|
||||
apd (smash.rec Pmk Pl Pr Pgl Pgr) (gluel a) = Pgl a :=
|
||||
!pushout.rec_glue
|
||||
|
||||
theorem rec_gluer {P : smash A B → Type} {Pmk : Πa b, P (smash.mk a b)}
|
||||
{Pl : P auxl} {Pr : P auxr} (Pgl : Πa, Pmk a pt =[gluel a] Pl)
|
||||
(Pgr : Πb, Pmk pt b =[gluer b] Pr) (b : B) :
|
||||
apd (smash.rec Pmk Pl Pr Pgl Pgr) (gluer b) = Pgr b :=
|
||||
!pushout.rec_glue
|
||||
|
||||
theorem rec_glue {P : smash A B → Type} {Pmk : Πa b, P (smash.mk a b)}
|
||||
{Pl : P auxl} {Pr : P auxr} (Pgl : Πa, Pmk a pt =[gluel a] Pl)
|
||||
(Pgr : Πb, Pmk pt b =[gluer b] Pr) (a : A) (b : B) :
|
||||
apd (smash.rec Pmk Pl Pr Pgl Pgr) (glue a b) =
|
||||
(Pgl a ⬝o (Pgl pt)⁻¹ᵒ) ⬝o (Pgr pt ⬝o (Pgr b)⁻¹ᵒ) :=
|
||||
by rewrite [↑glue, ↑gluel', ↑gluer', +apd_con, +apd_inv, +rec_gluel, +rec_gluer]
|
||||
|
||||
protected definition elim {P : Type} (Pmk : Πa b, P) (Pl Pr : P)
|
||||
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (x : smash' A B) : P :=
|
||||
smash.rec Pmk Pl Pr (λa, pathover_of_eq _ (Pgl a)) (λb, pathover_of_eq _ (Pgr b)) x
|
||||
|
||||
-- an elim which is easier to prove, but with worse computational properties
|
||||
protected definition elim' {P : Type} (Pmk : Πa b, P) (Pg : Πa b, Pmk a pt = Pmk pt b)
|
||||
(x : smash' A B) : P :=
|
||||
smash.rec' Pmk (λa b, pathover_of_eq _ (Pg a b)) x
|
||||
|
||||
theorem elim_gluel {P : Type} {Pmk : Πa b, P} {Pl Pr : P}
|
||||
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (a : A) :
|
||||
ap (smash.elim Pmk Pl Pr Pgl Pgr) (gluel a) = Pgl a :=
|
||||
begin
|
||||
apply eq_of_fn_eq_fn_inv !(pathover_constant (@gluel A B a)),
|
||||
rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑smash.elim,rec_gluel],
|
||||
end
|
||||
|
||||
theorem elim_gluer {P : Type} {Pmk : Πa b, P} {Pl Pr : P}
|
||||
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (b : B) :
|
||||
ap (smash.elim Pmk Pl Pr Pgl Pgr) (gluer b) = Pgr b :=
|
||||
begin
|
||||
apply eq_of_fn_eq_fn_inv !(pathover_constant (@gluer A B b)),
|
||||
rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑smash.elim,rec_gluer],
|
||||
end
|
||||
|
||||
theorem elim_glue {P : Type} {Pmk : Πa b, P} {Pl Pr : P}
|
||||
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (a : A) (b : B) :
|
||||
ap (smash.elim Pmk Pl Pr Pgl Pgr) (glue a b) = (Pgl a ⬝ (Pgl pt)⁻¹) ⬝ (Pgr pt ⬝ (Pgr b)⁻¹) :=
|
||||
by rewrite [↑glue, ↑gluel', ↑gluer', +ap_con, +ap_inv, +elim_gluel, +elim_gluer]
|
||||
|
||||
end smash
|
||||
open smash
|
||||
attribute smash.mk auxl auxr [constructor]
|
||||
attribute smash.rec smash.elim [unfold 9] [recursor 9]
|
||||
attribute smash.rec' smash.elim' [unfold 6]
|
||||
|
||||
namespace smash
|
||||
|
||||
variables {A B : Type*}
|
||||
|
||||
definition of_smash_pbool [unfold 2] (x : smash A pbool) : A :=
|
||||
begin
|
||||
induction x,
|
||||
{ induction b, exact pt, exact a },
|
||||
{ exact pt },
|
||||
{ exact pt },
|
||||
{ reflexivity },
|
||||
{ induction b: reflexivity }
|
||||
end
|
||||
|
||||
definition smash_pbool_equiv [constructor] (A : Type*) : smash A pbool ≃* A :=
|
||||
begin
|
||||
fapply pequiv_of_equiv,
|
||||
{ fapply equiv.MK,
|
||||
{ exact of_smash_pbool },
|
||||
{ intro a, exact smash.mk a tt },
|
||||
{ intro a, reflexivity },
|
||||
{ exact abstract begin intro x, induction x using smash.rec',
|
||||
{ induction b, exact (glue a tt)⁻¹, reflexivity },
|
||||
{ apply eq_pathover_id_right, induction b: esimp,
|
||||
{ refine ap02 _ !glue_pt_right ⬝ph _,
|
||||
refine ap_compose (λx, smash.mk x _) _ _ ⬝ph _,
|
||||
refine ap02 _ (!ap_con ⬝ (!elim_gluel ◾ (!ap_inv ⬝ !elim_gluel⁻²))) ⬝ph _,
|
||||
apply hinverse, apply square_of_eq,
|
||||
esimp, refine (!glue_pt_right ◾ !glue_pt_left)⁻¹ },
|
||||
{ apply square_of_eq, refine !con.left_inv ⬝ _, esimp, symmetry,
|
||||
refine ap_compose (λx, smash.mk x _) _ _ ⬝ _,
|
||||
exact ap02 _ !elim_glue }} end end }},
|
||||
{ reflexivity }
|
||||
end
|
||||
|
||||
/- smash A (susp B) = susp (smash A B) <- this follows from associativity and smash with S¹-/
|
||||
|
||||
/- To prove: Σ(X × Y) ≃ ΣX ∨ ΣY ∨ Σ(X ∧ Y) (notation means suspension, wedge, smash),
|
||||
|
@ -185,7 +13,11 @@ namespace smash
|
|||
|
||||
/- smash A B ≃ pcofiber (pprod_of_pwedge A B) -/
|
||||
|
||||
definition prod_of_wedge [unfold 3] (v : pwedge' A B) : A × B :=
|
||||
namespace smash
|
||||
|
||||
variables {A B : Type*}
|
||||
|
||||
definition prod_of_wedge [unfold 3] (v : pwedge A B) : A × B :=
|
||||
begin
|
||||
induction v with a b ,
|
||||
{ exact (a, pt) },
|
||||
|
@ -194,7 +26,7 @@ namespace smash
|
|||
end
|
||||
|
||||
variables (A B)
|
||||
definition pprod_of_pwedge [constructor] : pwedge' A B →* A ×* B :=
|
||||
definition pprod_of_pwedge [constructor] : pwedge A B →* A ×* B :=
|
||||
begin
|
||||
fconstructor,
|
||||
{ exact prod_of_wedge },
|
||||
|
@ -203,7 +35,7 @@ namespace smash
|
|||
|
||||
variables {A B}
|
||||
attribute pcofiber [constructor]
|
||||
definition pcofiber_of_smash [unfold 3] (x : smash A B) : pcofiber' (@pprod_of_pwedge A B) :=
|
||||
definition pcofiber_of_smash [unfold 3] (x : smash A B) : pcofiber (@pprod_of_pwedge A B) :=
|
||||
begin
|
||||
induction x,
|
||||
{ exact pushout.inr (a, b) },
|
||||
|
@ -218,7 +50,7 @@ namespace smash
|
|||
(p : x = x') : ap (λx, f (g x) (h x)) p = ap011 f (ap g p) (ap h p) :=
|
||||
by induction p; reflexivity
|
||||
|
||||
definition smash_of_pcofiber_glue [unfold 3] (x : pwedge' A B) :
|
||||
definition smash_of_pcofiber_glue [unfold 3] (x : pwedge A B) :
|
||||
Point (smash A B) = smash.mk (prod_of_wedge x).1 (prod_of_wedge x).2 :=
|
||||
begin
|
||||
induction x with a b: esimp,
|
||||
|
@ -231,7 +63,7 @@ namespace smash
|
|||
exact !con.right_inv ⬝ !con.right_inv⁻¹ }
|
||||
end
|
||||
|
||||
definition smash_of_pcofiber [unfold 3] (x : pcofiber' (pprod_of_pwedge A B)) : smash A B :=
|
||||
definition smash_of_pcofiber [unfold 3] (x : pcofiber (pprod_of_pwedge A B)) : smash A B :=
|
||||
begin
|
||||
induction x with x x,
|
||||
{ exact smash.mk pt pt },
|
||||
|
@ -239,7 +71,7 @@ namespace smash
|
|||
{ exact smash_of_pcofiber_glue x }
|
||||
end
|
||||
|
||||
definition pcofiber_of_smash_of_pcofiber (x : pcofiber' (pprod_of_pwedge A B)) :
|
||||
definition pcofiber_of_smash_of_pcofiber (x : pcofiber (pprod_of_pwedge A B)) :
|
||||
pcofiber_of_smash (smash_of_pcofiber x) = x :=
|
||||
begin
|
||||
induction x with x x,
|
||||
|
@ -257,16 +89,16 @@ namespace smash
|
|||
{ apply gluer },
|
||||
{ apply eq_pathover_id_right, refine ap_compose smash_of_pcofiber _ _ ⬝ph _,
|
||||
refine ap02 _ !elim_gluel ⬝ph _, refine !ap_inv ⬝ph _, refine !pushout.elim_glue⁻² ⬝ph _,
|
||||
esimp, apply square_of_eq, refine !idp_con ⬝ _ ⬝ whisker_right !inv_con_inv_right⁻¹ _,
|
||||
esimp, apply square_of_eq, refine !idp_con ⬝ _ ⬝ whisker_right _ !inv_con_inv_right⁻¹,
|
||||
exact !inv_con_cancel_right⁻¹ },
|
||||
{ apply eq_pathover_id_right, refine ap_compose smash_of_pcofiber _ _ ⬝ph _,
|
||||
refine ap02 _ !elim_gluer ⬝ph _, refine !ap_inv ⬝ph _, refine !pushout.elim_glue⁻² ⬝ph _,
|
||||
esimp, apply square_of_eq, refine !idp_con ⬝ _ ⬝ whisker_right !inv_con_inv_right⁻¹ _,
|
||||
esimp, apply square_of_eq, refine !idp_con ⬝ _ ⬝ whisker_right _ !inv_con_inv_right⁻¹,
|
||||
exact !inv_con_cancel_right⁻¹ },
|
||||
end
|
||||
|
||||
variables (A B)
|
||||
definition smash_pequiv_pcofiber : smash A B ≃* pcofiber' (pprod_of_pwedge A B) :=
|
||||
definition smash_pequiv_pcofiber : smash A B ≃* pcofiber (pprod_of_pwedge A B) :=
|
||||
begin
|
||||
fapply pequiv_of_equiv,
|
||||
{ fapply equiv.MK,
|
||||
|
@ -315,7 +147,7 @@ exit -- the definitions below compile, but take a long time to do so and have so
|
|||
apply square_of_eq, rewrite [+con.assoc], apply whisker_left, apply whisker_left,
|
||||
symmetry, apply con_eq_of_eq_inv_con, esimp, apply con_eq_of_eq_con_inv,
|
||||
refine _⁻² ⬝ !con_inv, refine _ ⬝ !con.assoc,
|
||||
refine _ ⬝ whisker_right !inv_con_cancel_right⁻¹ _, refine _ ⬝ !con.right_inv⁻¹,
|
||||
refine _ ⬝ whisker_right _ !inv_con_cancel_right⁻¹, refine _ ⬝ !con.right_inv⁻¹,
|
||||
refine !con.right_inv ◾ _, refine _ ◾ !con.right_inv,
|
||||
refine !ap_mk_right ⬝ !con.right_inv end end }
|
||||
end
|
||||
|
@ -328,7 +160,7 @@ exit -- the definitions below compile, but take a long time to do so and have so
|
|||
begin
|
||||
refine ap02 _ !elim_gluer ⬝ph _,
|
||||
induction b,
|
||||
{ apply square_of_eq, exact whisker_right !con.right_inv _ },
|
||||
{ apply square_of_eq, exact whisker_right _ !con.right_inv },
|
||||
{ apply square_pathover', exact sorry }
|
||||
end
|
||||
|
||||
|
@ -361,7 +193,7 @@ exit -- the definitions below compile, but take a long time to do so and have so
|
|||
refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _,
|
||||
refine ap02 _ !elim_gluer ⬝ph _,
|
||||
induction b,
|
||||
{ apply square_of_eq, exact whisker_right !con.right_inv _ },
|
||||
{ apply square_of_eq, exact whisker_right _ !con.right_inv },
|
||||
{ exact sorry}
|
||||
}}},
|
||||
{ reflexivity }
|
||||
|
|
|
@ -6,6 +6,7 @@ Authors: Michael Shulman, Floris van Doorn
|
|||
-/
|
||||
|
||||
import homotopy.LES_of_homotopy_groups .splice homotopy.susp ..move_to_lib ..colim
|
||||
..pointed_pi
|
||||
open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group
|
||||
seq_colim
|
||||
|
||||
|
@ -190,7 +191,7 @@ namespace spectrum
|
|||
|
||||
-- Suspension prespectra are one that's naturally indexed on the natural numbers
|
||||
definition psp_susp (X : Type*) : gen_prespectrum +ℕ :=
|
||||
gen_prespectrum.mk (λn, psuspn n X) (λn, loop_susp_unit (psuspn n X))
|
||||
gen_prespectrum.mk (λn, psuspn n X) (λn, loop_psusp_unit (psuspn n X))
|
||||
|
||||
/- Truncations -/
|
||||
|
||||
|
@ -210,7 +211,7 @@ namespace spectrum
|
|||
-- read off the homotopy groups without any tedious case-analysis of
|
||||
-- n. We increment by 2 in order to ensure that they are all
|
||||
-- automatically abelian groups.
|
||||
definition shomotopy_group [constructor] (n : ℤ) (E : spectrum) : CommGroup := πag[0+2] (E (2 - n))
|
||||
definition shomotopy_group [constructor] (n : ℤ) (E : spectrum) : AbGroup := πag[0+2] (E (2 - n))
|
||||
|
||||
notation `πₛ[`:95 n:0 `]`:0 := shomotopy_group n
|
||||
|
||||
|
@ -234,9 +235,10 @@ namespace spectrum
|
|||
-- Sections of parametrized spectra
|
||||
----------------------------------------
|
||||
|
||||
definition spi {N : succ_str} (A : Type) (E : A -> gen_spectrum N) : gen_spectrum N :=
|
||||
spectrum.MK (λn, ppi (λa, E a n))
|
||||
(λn, (loop_ppi_commute (λa, E a (S n)))⁻¹ᵉ* ∘*ᵉ equiv_ppi_right (λa, equiv_glue (E a) n))
|
||||
-- this definition must be changed to use dependent maps respecting the basepoint, presumably
|
||||
-- definition spi {N : succ_str} (A : Type) (E : A -> gen_spectrum N) : gen_spectrum N :=
|
||||
-- spectrum.MK (λn, ppi (λa, E a n))
|
||||
-- (λn, (loop_ppi_commute (λa, E a (S n)))⁻¹ᵉ* ∘*ᵉ equiv_ppi_right (λa, equiv_glue (E a) n))
|
||||
|
||||
/-----------------------------------------
|
||||
Fibers and long exact sequences
|
||||
|
@ -311,12 +313,12 @@ namespace spectrum
|
|||
example (n : ℤ) : cc_to_fn LES_of_shomotopy_groups (n, 1) = πₛ→[n] (spoint f) := idp
|
||||
-- the maps are ugly for (n, 2)
|
||||
|
||||
definition comm_group_LES_of_shomotopy_groups : Π(v : +3ℤ), comm_group (LES_of_shomotopy_groups v)
|
||||
| (n, fin.mk 0 H) := proof CommGroup.struct (πₛ[n] Y) qed
|
||||
| (n, fin.mk 1 H) := proof CommGroup.struct (πₛ[n] X) qed
|
||||
| (n, fin.mk 2 H) := proof CommGroup.struct (πₛ[n] (sfiber f)) qed
|
||||
definition ab_group_LES_of_shomotopy_groups : Π(v : +3ℤ), ab_group (LES_of_shomotopy_groups v)
|
||||
| (n, fin.mk 0 H) := proof AbGroup.struct (πₛ[n] Y) qed
|
||||
| (n, fin.mk 1 H) := proof AbGroup.struct (πₛ[n] X) qed
|
||||
| (n, fin.mk 2 H) := proof AbGroup.struct (πₛ[n] (sfiber f)) qed
|
||||
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
||||
local attribute comm_group_LES_of_shomotopy_groups [instance]
|
||||
local attribute ab_group_LES_of_shomotopy_groups [instance]
|
||||
|
||||
definition is_homomorphism_LES_of_shomotopy_groups :
|
||||
Π(v : +3ℤ), is_homomorphism (cc_to_fn LES_of_shomotopy_groups v)
|
||||
|
@ -330,7 +332,7 @@ namespace spectrum
|
|||
-- In the comments below is a start on an explicit description of the LES for spectra
|
||||
-- Maybe it's slightly nicer to work with than the above version
|
||||
|
||||
-- definition shomotopy_groups [reducible] : -3ℤ → CommGroup
|
||||
-- definition shomotopy_groups [reducible] : -3ℤ → AbGroup
|
||||
-- | (n, fin.mk 0 H) := πₛ[n] Y
|
||||
-- | (n, fin.mk 1 H) := πₛ[n] X
|
||||
-- | (n, fin.mk k H) := πₛ[n] (sfiber f)
|
||||
|
|
|
@ -90,7 +90,7 @@ namespace spherical_fibrations
|
|||
definition BF_mul {n m : ℕ} (X : BF n) (Y : BF m) : BF (n + m) :=
|
||||
begin
|
||||
cases X with X hX, cases Y with Y hY,
|
||||
apply sigma.mk (psmash X Y),
|
||||
apply sigma.mk (smash X Y),
|
||||
induction hX with fX, induction hY with fY, apply tr,
|
||||
exact sorry -- needs smash.spheres : psmash (S. n) (S. m) ≃ S. (n + m)
|
||||
end
|
||||
|
|
1038
move_to_lib.hlean
1038
move_to_lib.hlean
File diff suppressed because it is too large
Load diff
|
@ -24,13 +24,6 @@ open eq pointed equiv sigma
|
|||
|
||||
namespace pointed
|
||||
|
||||
-- needs another name! (one more p?)
|
||||
structure ppi (A : Type*) (P : A → Type*) :=
|
||||
(to_fun : Π a : A, P a)
|
||||
(resp_pt : to_fun (Point A) = Point (P (Point A)))
|
||||
|
||||
attribute ppi.to_fun [coercion]
|
||||
|
||||
abbreviation ppi_resp_pt [unfold 3] := @ppi.resp_pt
|
||||
|
||||
definition pointed_ppi [instance] [constructor] {A : Type*}
|
||||
|
@ -79,7 +72,7 @@ namespace pointed
|
|||
esimp at *,
|
||||
fapply apd011 ppi.mk,
|
||||
{ apply eq_of_homotopy h },
|
||||
{ esimp, apply concato_eq, apply pathover_eq_Fl, apply inv_con_eq_of_eq_con,
|
||||
{ esimp, apply concato_eq, apply eq_pathover_Fl, apply inv_con_eq_of_eq_con,
|
||||
rewrite [ap_eq_apd10, apd10_eq_of_homotopy], exact r }
|
||||
end
|
||||
|
||||
|
@ -105,11 +98,11 @@ namespace pointed
|
|||
... ≃ Σ(p : ppi.to_fun f = ppi.to_fun g),
|
||||
ppi_resp_pt f = ap (λh, h pt) p ⬝ ppi_resp_pt g
|
||||
: sigma_equiv_sigma_right
|
||||
(λp, pathover_eq_equiv_Fl p (ppi_resp_pt f) (ppi_resp_pt g))
|
||||
(λp, eq_pathover_equiv_Fl p (ppi_resp_pt f) (ppi_resp_pt g))
|
||||
... ≃ Σ(p : ppi.to_fun f = ppi.to_fun g),
|
||||
ppi_resp_pt f = apd10 p pt ⬝ ppi_resp_pt g
|
||||
: sigma_equiv_sigma_right
|
||||
(λp, equiv_eq_closed_right _ (whisker_right (ap_eq_apd10 p _) _))
|
||||
(λp, equiv_eq_closed_right _ (whisker_right _ (ap_eq_apd10 p _)))
|
||||
... ≃ Σ(p : f ~ g), ppi_resp_pt f = p pt ⬝ ppi_resp_pt g
|
||||
: sigma_equiv_sigma_left' eq_equiv_homotopy
|
||||
... ≃ Σ(p : f ~ g), p pt ⬝ ppi_resp_pt g = ppi_resp_pt f
|
||||
|
|
Loading…
Reference in a new issue