diff --git a/cohomology/serre.hlean b/cohomology/serre.hlean index 4ec0db2..8d986f0 100644 --- a/cohomology/serre.hlean +++ b/cohomology/serre.hlean @@ -209,7 +209,9 @@ end unreduced_atiyah_hirzebruch section serre universe variable u - variables {X : Type} (x₀ : X) (F : X → Type) {X₁ X₂ : pType.{u}} (f : X₁ →* X₂) + variables {X : Type} (x₀ : X) (F : X → Type) + {X₁ X₂ : pType.{u}} (f : X₁ →* X₂) + {Z₁ Z₂ : Type.{u}} (g : Z₁ → Z₂) (Y : spectrum) (s₀ : ℤ) (H : is_strunc s₀ Y) include H @@ -235,6 +237,15 @@ section serre end qed + definition serre_convergence_of_map : + (λn s, uopH^-(n-s)[(x : Z₂), uH^-s[fiber g x, Y]]) ⟹ᵍ (λn, uH^-n[Z₁, Y]) := + proof + converges_to_g_isomorphism + (serre_convergence (fiber g) Y s₀ H) + begin intro n s, reflexivity end + begin intro n, apply unreduced_cohomology_isomorphism, exact !sigma_fiber_equiv⁻¹ᵉ end + qed + definition serre_convergence_of_is_conn (H2 : is_conn 1 X) : (λn s, uoH^-(n-s)[X, uH^-s[F x₀, Y]]) ⟹ᵍ (λn, uH^-n[Σ(x : X), F x, Y]) := proof @@ -248,7 +259,7 @@ section serre (λn s, uoH^-(n-s)[X₂, uH^-s[pfiber f, Y]]) ⟹ᵍ (λn, uH^-n[X₁, Y]) := proof converges_to_g_isomorphism - (serre_convergence_of_is_conn pt (λx, fiber f x) Y s₀ H H2) + (serre_convergence_of_is_conn pt (fiber f) Y s₀ H H2) begin intro n s, reflexivity end begin intro n, apply unreduced_cohomology_isomorphism, exact !sigma_fiber_equiv⁻¹ᵉ end qed