From b3765932d9783cd276bf838fe7d10ae5f1db8cc2 Mon Sep 17 00:00:00 2001 From: Floris van Doorn Date: Thu, 6 Oct 2016 19:53:44 -0400 Subject: [PATCH] work on spectrification --- colim.hlean | 358 ++++++++++++++++++++++++++++++++++++++++ homotopy/spectrum.hlean | 65 +++++++- homotopy/splice.hlean | 8 +- move_to_lib.hlean | 24 ++- 4 files changed, 444 insertions(+), 11 deletions(-) create mode 100644 colim.hlean diff --git a/colim.hlean b/colim.hlean new file mode 100644 index 0000000..4e966e1 --- /dev/null +++ b/colim.hlean @@ -0,0 +1,358 @@ +-- authors: Floris van Doorn, Egbert Rijke + +import hit.colimit types.fin homotopy.chain_complex .move_to_lib +open seq_colim pointed algebra eq is_trunc nat is_equiv equiv sigma sigma.ops chain_complex + +namespace seq_colim + + definition pseq_colim [constructor] {X : ℕ → Type*} (f : Πn, X n →* X (n+1)) : Type* := + pointed.MK (seq_colim f) (@sι _ _ 0 pt) + + -- TODO: we need to prove this + definition pseq_colim_loop {X : ℕ → Type*} (f : Πn, X n →* X (n+1)) : + Ω (pseq_colim f) ≃* pseq_colim (λn, Ω→(f n)) := + sorry + + definition seq_diagram [reducible] (A : ℕ → Type) : Type := Π⦃n⦄, A n → A (succ n) + + structure Seq_diagram : Type := + (carrier : ℕ → Type) + (struct : seq_diagram carrier) + + definition is_equiseq [reducible] {A : ℕ → Type} (f : seq_diagram A) : Type := + forall (n : ℕ), is_equiv (@f n) + + structure Equi_seq : Type := + (carrier : ℕ → Type) + (maps : seq_diagram carrier) + (prop : is_equiseq maps) + + protected abbreviation Mk [constructor] := Seq_diagram.mk + attribute Seq_diagram.carrier [coercion] + attribute Seq_diagram.struct [coercion] + + variables {A : ℕ → Type} (f : seq_diagram A) + include f + + definition rep0 [reducible] (k : ℕ) : A 0 → A k := + begin + intro a, + induction k with k x, + exact a, + exact f x + end + + definition is_equiv_rep0 [constructor] [H : is_equiseq f] (k : ℕ) : + is_equiv (rep0 f k) := + begin + induction k with k IH, + { apply is_equiv_id}, + { apply is_equiv_compose (@f _) (rep0 f k)}, + end + + local attribute is_equiv_rep0 [instance] + definition rep0_back [reducible] [H : is_equiseq f] (k : ℕ) : A k → A 0 := + (rep0 f k)⁻¹ + + section generalized_rep + variable {n : ℕ} + + definition rep [reducible] (k : ℕ) (a : A n) : A (n + k) := + by induction k with k x; exact a; exact f x + + definition rep_f (k : ℕ) (a : A n) : pathover A (rep f k (f a)) (succ_add n k) (rep f (succ k) a) := + begin + induction k with k IH, + { constructor}, + { apply pathover_ap, exact apo f IH} + end + + definition rep_back [H : is_equiseq f] (k : ℕ) (a : A (n + k)) : A n := + begin + induction k with k g, + exact a, + exact g ((@f (n + k))⁻¹ a), + end + + definition is_equiv_rep [constructor] [H : is_equiseq f] (k : ℕ) : + is_equiv (λ (a : A n), rep f k a) := + begin + fapply adjointify, + { exact rep_back f k}, + { induction k with k IH: intro b, + { reflexivity}, + unfold rep, + unfold rep_back, + fold [rep f k (rep_back f k ((@f (n+k))⁻¹ b))], + refine ap (@f (n+k)) (IH ((@f (n+k))⁻¹ b)) ⬝ _, + apply right_inv (@f (n+k))}, + induction k with k IH: intro b, + exact rfl, + unfold rep_back, + unfold rep, + fold [rep f k b], + refine _ ⬝ IH b, + exact ap (rep_back f k) (left_inv (@f (n+k)) (rep f k b)) + end + + definition rep_rep (k l : ℕ) (a : A n) : + pathover A (rep f k (rep f l a)) (nat.add_assoc n l k) (rep f (l + k) a) := + begin + induction k with k IH, + { constructor}, + { apply pathover_ap, exact apo f IH} + end + + definition f_rep (k : ℕ) (a : A n) : f (rep f k a) = rep f (succ k) a := idp + end generalized_rep + + section shift + + definition shift_diag [unfold_full] : seq_diagram (λn, A (succ n)) := + λn a, f a + + definition kshift_diag [unfold_full] (k : ℕ) : seq_diagram (λn, A (k + n)) := + λn a, f a + + definition kshift_diag' [unfold_full] (k : ℕ) : seq_diagram (λn, A (n + k)) := + λn a, transport A (succ_add n k)⁻¹ (f a) + end shift + + section constructions + + omit f + + definition constant_seq (X : Type) : seq_diagram (λ n, X) := + λ n x, x + + definition seq_diagram_arrow_left [unfold_full] (X : Type) : seq_diagram (λn, X → A n) := + λn g x, f (g x) + + -- inductive finset : ℕ → Type := + -- | fin : forall n, finset n → finset (succ n) + -- | ftop : forall n, finset (succ n) + + definition seq_diagram_fin : seq_diagram fin := + λn, fin.lift_succ + + definition id0_seq (x y : A 0) : ℕ → Type := + λ k, rep0 f k x = rep0 f k y + + definition id0_seq_diagram (x y : A 0) : seq_diagram (id0_seq f x y) := + λ (k : ℕ) (p : rep0 f k x = rep0 f k y), ap (@f k) p + + definition id_seq (n : ℕ) (x y : A n) : ℕ → Type := + λ k, rep f k x = rep f k y + + definition id_seq_diagram (n : ℕ) (x y : A n) : seq_diagram (id_seq f n x y) := + λ (k : ℕ) (p : rep f k x = rep f k y), ap (@f (n + k)) p + + end constructions + + section over + + variable {A} + variable (P : Π⦃n⦄, A n → Type) + + definition seq_diagram_over : Type := Π⦃n⦄ {a : A n}, P a → P (f a) + + variable (g : seq_diagram_over f P) + variables {f P} + + definition seq_diagram_of_over [unfold_full] {n : ℕ} (a : A n) : + seq_diagram (λk, P (rep f k a)) := + λk p, g p + + definition seq_diagram_sigma [unfold 6] : seq_diagram (λn, Σ(x : A n), P x) := + λn v, ⟨f v.1, g v.2⟩ + + variables {n : ℕ} (f P) + + theorem rep_f_equiv [constructor] (a : A n) (k : ℕ) : + P (rep f k (f a)) ≃ P (rep f (succ k) a) := + equiv_apd011 P (rep_f f k a) + + theorem rep_rep_equiv [constructor] (a : A n) (k l : ℕ) : + P (rep f (l + k) a) ≃ P (rep f k (rep f l a)) := + (equiv_apd011 P (rep_rep f k l a))⁻¹ᵉ + + end over + + omit f + -- do we need to generalize this to the case where the bottom sequence consists of equivalences? + definition seq_diagram_pi {X : Type} {A : X → ℕ → Type} (g : Π⦃x n⦄, A x n → A x (succ n)) : + seq_diagram (λn, Πx, A x n) := + λn f x, g (f x) + + abbreviation ι [constructor] := @inclusion + abbreviation ι' [constructor] [parsing_only] {A} (f n) := @inclusion A f n + + definition rep0_glue (k : ℕ) (a : A 0) : ι f (rep0 f k a) = ι f a := + begin + induction k with k IH, + { reflexivity}, + { exact glue f (rep0 f k a) ⬝ IH} + end + + definition shift_up [unfold 3] (x : seq_colim f) : seq_colim (shift_diag f) := + begin + induction x, + { exact ι _ (f a)}, + { exact glue _ (f a)} + end + + definition shift_down [unfold 3] (x : seq_colim (shift_diag f)) : seq_colim f := + begin + induction x, + { exact ι f a}, + { exact glue f a} + end + + definition shift_equiv [constructor] : seq_colim f ≃ seq_colim (shift_diag f) := + equiv.MK (shift_up f) + (shift_down f) + abstract begin + intro x, induction x, + { esimp, exact glue _ a}, + { apply eq_pathover, + rewrite [▸*, ap_id, ap_compose (shift_up f) (shift_down f), ↑shift_down, + elim_glue], + apply square_of_eq, apply whisker_right, exact !elim_glue⁻¹} + end end + abstract begin + intro x, induction x, + { exact glue _ a}, + { apply eq_pathover, + rewrite [▸*, ap_id, ap_compose (shift_down f) (shift_up f), ↑shift_up, + elim_glue], + apply square_of_eq, apply whisker_right, exact !elim_glue⁻¹} + end end + + definition pshift_equiv [constructor] {A : ℕ → Type*} (f : Πn, A n →* A (succ n)) : + pseq_colim f ≃* pseq_colim (λn, f (n+1)) := + begin + fapply pequiv_of_equiv, + { apply shift_equiv }, + { exact ap (ι _) !respect_pt } + end + + section functor + variable {f} + variables {A' : ℕ → Type} {f' : seq_diagram A'} + variables (g : Π⦃n⦄, A n → A' n) (p : Π⦃n⦄ (a : A n), g (f a) = f' (g a)) + include p + + definition seq_colim_functor [unfold 7] : seq_colim f → seq_colim f' := + begin + intro x, induction x with n a n a, + { exact ι f' (g a)}, + { exact ap (ι f') (p a) ⬝ glue f' (g a)} + end + + theorem seq_colim_functor_glue {n : ℕ} (a : A n) + : ap (seq_colim_functor g p) (glue f a) = ap (ι f') (p a) ⬝ glue f' (g a) := + !elim_glue + + omit p + + definition is_equiv_seq_colim_functor [constructor] [H : Πn, is_equiv (@g n)] + : is_equiv (seq_colim_functor @g p) := + adjointify _ (seq_colim_functor (λn, (@g _)⁻¹) (λn a, inv_commute' g f f' p a)) + abstract begin + intro x, induction x, + { esimp, exact ap (ι _) (right_inv (@g _) a)}, + { apply eq_pathover, + rewrite [ap_id, ap_compose (seq_colim_functor g p) (seq_colim_functor _ _), + seq_colim_functor_glue _ _ a, ap_con, ▸*, + seq_colim_functor_glue _ _ ((@g _)⁻¹ a), -ap_compose, ↑[function.compose], + ap_compose (ι _) (@g _),ap_inv_commute',+ap_con, con.assoc, + +ap_inv, inv_con_cancel_left, con.assoc, -ap_compose], + apply whisker_tl, apply move_left_of_top, esimp, + apply transpose, apply square_of_pathover, apply apd} + end end + abstract begin + intro x, induction x, + { esimp, exact ap (ι _) (left_inv (@g _) a)}, + { apply eq_pathover, + rewrite [ap_id, ap_compose (seq_colim_functor _ _) (seq_colim_functor _ _), + seq_colim_functor_glue _ _ a, ap_con,▸*, seq_colim_functor_glue _ _ (g a), + -ap_compose, ↑[function.compose], ap_compose (ι f) (@g _)⁻¹, inv_commute'_fn, + +ap_con, con.assoc, con.assoc, +ap_inv, con_inv_cancel_left, -ap_compose], + apply whisker_tl, apply move_left_of_top, esimp, + apply transpose, apply square_of_pathover, apply apd} + end end + + definition seq_colim_equiv [constructor] (g : Π{n}, A n ≃ A' n) + (p : Π⦃n⦄ (a : A n), g (f a) = f' (g a)) : seq_colim f ≃ seq_colim f' := + equiv.mk _ (is_equiv_seq_colim_functor @g p) + + definition seq_colim_rec_unc [unfold 4] {P : seq_colim f → Type} + (v : Σ(Pincl : Π ⦃n : ℕ⦄ (a : A n), P (ι f a)), + Π ⦃n : ℕ⦄ (a : A n), Pincl (f a) =[glue f a] Pincl a) + : Π(x : seq_colim f), P x := + by induction v with Pincl Pglue; exact seq_colim.rec f Pincl Pglue + + definition is_equiv_seq_colim_rec (P : seq_colim f → Type) : + is_equiv (seq_colim_rec_unc : + (Σ(Pincl : Π ⦃n : ℕ⦄ (a : A n), P (ι f a)), + Π ⦃n : ℕ⦄ (a : A n), Pincl (f a) =[glue f a] Pincl a) + → (Π (aa : seq_colim f), P aa)) := + begin + fapply adjointify, + { intro s, exact ⟨λn a, s (ι f a), λn a, apd s (glue f a)⟩}, + { intro s, apply eq_of_homotopy, intro x, induction x, + { reflexivity}, + { apply eq_pathover_dep, esimp, apply hdeg_squareover, apply rec_glue}}, + { intro v, induction v with Pincl Pglue, fapply ap (sigma.mk _), + apply eq_of_homotopy2, intros n a, apply rec_glue}, + end + + /- universal property -/ + definition equiv_seq_colim_rec (P : seq_colim f → Type) : + (Σ(Pincl : Π ⦃n : ℕ⦄ (a : A n), P (ι f a)), + Π ⦃n : ℕ⦄ (a : A n), Pincl (f a) =[glue f a] Pincl a) ≃ (Π (aa : seq_colim f), P aa) := + equiv.mk _ !is_equiv_seq_colim_rec + end functor + + definition pseq_colim_pequiv [constructor] {A A' : ℕ → Type*} {f : Π{n}, A n →* A (n+1)} + {f' : Π{n}, A' n →* A' (n+1)} (g : Π{n}, A n ≃* A' n) + (p : Π⦃n⦄, g ∘* f ~ f' ∘* g) : pseq_colim @f ≃* pseq_colim @f' := + pequiv_of_equiv (seq_colim_equiv @g p) (ap (ι _) (respect_pt g)) + + definition seq_colim_equiv_constant [constructor] {A : ℕ → Type*} {f f' : Π⦃n⦄, A n → A (n+1)} + (p : Π⦃n⦄ (a : A n), f a = f' a) : seq_colim f ≃ seq_colim f' := + seq_colim_equiv (λn, erfl) p + + definition pseq_colim_equiv_constant [constructor] {A : ℕ → Type*} {f f' : Π{n}, A n →* A (n+1)} + (p : Π⦃n⦄, f ~ f') : pseq_colim @f ≃* pseq_colim @f' := + pseq_colim_pequiv (λn, pequiv.rfl) p + + definition pseq_colim.elim [constructor] {A : ℕ → Type*} {B : Type*} {f : Π{n}, A n →* A (n+1)} + (g : Πn, A n →* B) (p : Πn, g (n+1) ∘* f ~ g n) : pseq_colim @f →* B := + begin + fapply pmap.mk, + { intro x, induction x with n a n a, + { exact g n a }, + { exact p n a }}, + { esimp, apply respect_pt } + end + + -- open succ_str + -- definition pseq_colim_succ_str_change_index' {N : succ_str} {B : N → Type*} (n : N) (m : ℕ) + -- (h : Πn, B n →* B (S n)) : + -- pseq_colim (λk, h (n +' (m + succ k))) ≃* pseq_colim (λk, h (S n +' (m + k))) := + -- sorry + + -- definition pseq_colim_succ_str_change_index {N : succ_str} {B : ℕ → N → Type*} (n : N) + -- (h : Π(k : ℕ) n, B k n →* B k (S n)) : + -- pseq_colim (λk, h k (n +' succ k)) ≃* pseq_colim (λk, h k (S n +' k)) := + -- sorry + + -- definition pseq_colim_index_eq_general {N : succ_str} (B : N → Type*) (f g : ℕ → N) (p : f ~ g) + -- (pf : Πn, S (f n) = f (n+1)) (pg : Πn, S (g n) = g (n+1)) (h : Πn, B n →* B (S n)) : + -- @pseq_colim (λn, B (f n)) (λn, ptransport B (pf n) ∘* h (f n)) ≃* + -- @pseq_colim (λn, B (g n)) (λn, ptransport B (pg n) ∘* h (g n)) := + -- sorry + + +end seq_colim diff --git a/homotopy/spectrum.hlean b/homotopy/spectrum.hlean index 2d1631a..965c6f5 100644 --- a/homotopy/spectrum.hlean +++ b/homotopy/spectrum.hlean @@ -5,8 +5,9 @@ Authors: Michael Shulman, Floris van Doorn -/ -import homotopy.LES_of_homotopy_groups .splice homotopy.susp ..move_to_lib +import homotopy.LES_of_homotopy_groups .splice homotopy.susp ..move_to_lib ..colim open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group + seq_colim /--------------------- Basic definitions @@ -37,6 +38,8 @@ attribute gen_spectrum.to_is_spectrum [instance] -- Classically, spectra and prespectra use the successor structure +ℕ. -- But we will use +ℤ instead, to reduce case analysis later on. +abbreviation prespectrum := gen_prespectrum +ℤ +abbreviation prespectrum.mk := @gen_prespectrum.mk +ℤ abbreviation spectrum := gen_spectrum +ℤ abbreviation spectrum.mk := @gen_spectrum.mk +ℤ @@ -97,7 +100,8 @@ namespace spectrum -- Generally it's easiest to define a spectrum by giving 'equiv's -- directly. This works for any indexing succ_str. - protected definition MK {N : succ_str} (deloop : N → Type*) (glue : Π(n:N), (deloop n) ≃* (Ω (deloop (S n)))) : gen_spectrum N := + protected definition MK [constructor] {N : succ_str} (deloop : N → Type*) + (glue : Π(n:N), (deloop n) ≃* (Ω (deloop (S n)))) : gen_spectrum N := gen_spectrum.mk (gen_prespectrum.mk deloop (λ(n:N), glue n)) (begin apply is_spectrum.mk, intros n, esimp, @@ -105,7 +109,8 @@ namespace spectrum end) -- Finally, we combine them and give a way to produce a (ℤ-)spectrum from a ℕ-indexed family of 'equiv's. - protected definition Mk (deloop : ℕ → Type*) (glue : Π(n:ℕ), (deloop n) ≃* (Ω (deloop (nat.succ n)))) : spectrum := + protected definition Mk [constructor] (deloop : ℕ → Type*) + (glue : Π(n:ℕ), (deloop n) ≃* (Ω (deloop (nat.succ n)))) : spectrum := spectrum.of_nat_indexed (spectrum.MK deloop glue) ------------------------------ @@ -353,6 +358,60 @@ namespace spectrum /- Spectrification -/ + open chain_complex + definition spectrify_type_term {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ) : Type* := + Ω[k] (X (n +' k)) + + definition spectrify_type_fun' {N : succ_str} (X : gen_prespectrum N) (k : ℕ) (n : N) : + Ω[k] (X n) →* Ω[k+1] (X (S n)) := + !loopn_succ_in⁻¹ᵉ* ∘* Ω→[k] (glue X n) + + definition spectrify_type_fun {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ) : + spectrify_type_term X n k →* spectrify_type_term X n (k+1) := + spectrify_type_fun' X k (n +' k) + + definition spectrify_type {N : succ_str} (X : gen_prespectrum N) (n : N) : Type* := + pseq_colim (spectrify_type_fun X n) + + definition spectrify_pequiv {N : succ_str} (X : gen_prespectrum N) (n : N) : + spectrify_type X n ≃* Ω (spectrify_type X (S n)) := + begin + refine _ ⬝e* !pseq_colim_loop⁻¹ᵉ*, + refine !pshift_equiv ⬝e* _, + refine _ ⬝e* pseq_colim_equiv_constant (λn, !ap1_pcompose⁻¹*), + transitivity pseq_colim (λk, spectrify_type_fun' X (succ k) (S n +' k)), + rotate 1, --exact pseq_colim_equiv_constant (λn, !ap1_pcompose⁻¹*), + reflexivity, + transitivity pseq_colim (λk, spectrify_type_fun' X (succ k) (n +' succ k)), + reflexivity, + fapply pseq_colim_pequiv, + { intro n, apply loopn_pequiv_loopn, apply pequiv_ap X, apply succ_str.add_succ }, + { intro n, apply to_homotopy, exact sorry } + end + + definition spectrify [constructor] {N : succ_str} (X : gen_prespectrum N) : gen_spectrum N := + spectrum.MK (spectrify_type X) (spectrify_pequiv X) + + definition gluen {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ) + : X n →* Ω[k] (X (n +' k)) := + by induction k with k f; reflexivity; exact !loopn_succ_in⁻¹ᵉ* ∘* Ω→[k] (glue X (n +' k)) ∘* f + + -- note: the forward map is (currently) not definitionally equal to gluen. + definition equiv_gluen {N : succ_str} (X : gen_spectrum N) (n : N) (k : ℕ) + : X n ≃* Ω[k] (X (n +' k)) := + by induction k with k f; reflexivity; exact f ⬝e* loopn_pequiv_loopn k (equiv_glue X (n +' k)) + ⬝e* !loopn_succ_in⁻¹ᵉ* + + definition spectrify_map {N : succ_str} {X : gen_prespectrum N} {Y : gen_spectrum N} + (f : X →ₛ Y) : spectrify X →ₛ Y := + begin + fapply smap.mk, + { intro n, fapply pseq_colim.elim, + { intro k, refine !equiv_gluen⁻¹ᵉ* ∘* apn k (f (n +' k)) }, + { intro k, apply to_homotopy, exact sorry }}, + { intro n, exact sorry } + end + /- Tensor by spaces -/ /- Smash product of spectra -/ diff --git a/homotopy/splice.hlean b/homotopy/splice.hlean index 3524106..67d4210 100644 --- a/homotopy/splice.hlean +++ b/homotopy/splice.hlean @@ -29,7 +29,7 @@ So far, the splicing seems to be only needed for k = 3, so it seems to be suffic -/ -import homotopy.chain_complex +import homotopy.chain_complex ..move_to_lib open prod prod.ops succ_str fin pointed nat algebra eq is_trunc equiv is_equiv @@ -63,12 +63,6 @@ begin { exact dif_pos p} end - --move - definition succ_str.add [reducible] {N : succ_str} (n : N) (k : ℕ) : N := - iterate S k n - - infix ` +' `:65 := succ_str.add - definition splice_type [unfold 5] {N M : succ_str} (G : N → chain_complex M) (m : M) (x : stratified N 2) : Set* := G x.1 (m +' val x.2) diff --git a/move_to_lib.hlean b/move_to_lib.hlean index a1d85a7..a4e5b3f 100644 --- a/move_to_lib.hlean +++ b/move_to_lib.hlean @@ -3,7 +3,7 @@ import homotopy.sphere2 open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group - is_trunc + is_trunc function attribute equiv.symm equiv.trans is_equiv.is_equiv_ap fiber.equiv_postcompose fiber.equiv_precompose pequiv.to_pmap pequiv._trans_of_to_pmap ghomotopy_group_succ_in isomorphism_of_eq [constructor] attribute is_equiv.eq_of_fn_eq_fn' [unfold 3] @@ -100,6 +100,14 @@ end eq open eq namespace pointed + definition ptransport [constructor] {A : Type} (B : A → Type*) {a a' : A} (p : a = a') + : B a →* B a' := + pmap.mk (transport B p) (apdt (λa, Point (B a)) p) + + definition pequiv_ap [constructor] {A : Type} (B : A → Type*) {a a' : A} (p : a = a') + : B a ≃* B a' := + pequiv_of_pmap (ptransport B p) !is_equiv_tr + definition pequiv_compose {A B C : Type*} (g : B ≃* C) (f : A ≃* B) : A ≃* C := pequiv_of_pmap (g ∘* f) (is_equiv_compose g f) @@ -357,3 +365,17 @@ namespace is_conn -- homotopy.connectedness end is_conn + +namespace succ_str + variables {N : succ_str} + + protected definition add [reducible] (n : N) (k : ℕ) : N := + iterate S k n + + infix ` +' `:65 := succ_str.add + + definition add_succ (n : N) (k : ℕ) : n +' (k + 1) = (S n) +' k := + by induction k with k p; reflexivity; exact ap S p + + +end succ_str