image of a boundary is subgroup of the kernel
This commit is contained in:
parent
1b09aee650
commit
b57eadc56a
1 changed files with 22 additions and 0 deletions
|
@ -230,4 +230,26 @@ namespace group
|
|||
: CommGroup :=
|
||||
CommGroup.mk _ (comm_group_sg H)
|
||||
|
||||
definition kernel {G H : Group} (f : G →g H) : Group := subgroup (kernel_subgroup f)
|
||||
|
||||
definition incl_of_subgroup [constructor] {G : Group} (H : subgroup_rel G) : subgroup H →g G :=
|
||||
begin
|
||||
fapply homomorphism.mk,
|
||||
-- the underlying function
|
||||
{ intro h, induction h with g, exact g},
|
||||
-- is a homomorphism
|
||||
intro g h, reflexivity
|
||||
end
|
||||
|
||||
definition subgroup_rel_of_subgroup {G : Group} (H1 H2 : subgroup_rel G) (hyp : Π (g : G), subgroup_rel.R H1 g → subgroup_rel.R H2 g) : subgroup_rel (subgroup H2) :=
|
||||
subgroup_rel.mk
|
||||
-- definition of the subset
|
||||
(λ h, H1 (incl_of_subgroup H2 h))
|
||||
-- contains 1
|
||||
(subgroup_has_one H1)
|
||||
-- closed under multiplication
|
||||
(λ g h p q, subgroup_respect_mul H1 p q)
|
||||
-- closed under inverses
|
||||
(λ h p, subgroup_respect_inv H1 p)
|
||||
|
||||
end group
|
||||
|
|
Loading…
Reference in a new issue