diff --git a/Notes/smash.tex b/Notes/smash.tex index b32c5de..7c6ccee 100644 --- a/Notes/smash.tex +++ b/Notes/smash.tex @@ -12,6 +12,10 @@ \renewcommand{\epsilon}{\varepsilon} \newcommand{\tr}{\cdot} \renewcommand{\o}{\ensuremath{\circ}} +\newcommand{\auxl}{\mathsf{auxl}} +\newcommand{\auxr}{\mathsf{auxr}} +\newcommand{\gluel}{\mathsf{gluel}} +\newcommand{\gluer}{\mathsf{gluer}} \begin{document} @@ -43,9 +47,7 @@ started with. In diagrams, we will denote pointed homotopies by equalities, but we always mean pointed homotopies. \item The type $A\to B$ of pointed maps from $A$ to $B$ is itself pointed, with as basepoint the - constant map $0\equiv0_{A,B}:A\to B$ which has as underlying function $\lam{a:A}b_0$. In these - notes we will not use $0$ for the empty type (since that is not pointed, we will not use the empty - type). + constant map $0\equiv0_{A,B}:A\to B$ which has as underlying function $\lam{a:A}b_0$. We have $0\o g \sim 0$ and $f \o 0 \sim 0$. \end{rmk} \begin{lem} @@ -65,17 +67,35 @@ \section{Smash Product} - -\begin{lem}\mbox{} +\begin{lem}\mbox{}\label{lem:smash-general} \begin{itemize} + \item The smash of $A$ and $B$ is the HIT generated by point constructor + $({-},{-}):A\to B \to A\smash B$ and two auxilliary points $\auxl,\auxr:A\smash B$ and path + constructors $\gluel:\prd{a:A}(a,b_0)=\auxl$ and $\gluer:\prd{b:B}(a_0,b)=\auxr$ (the + constructors are given as unpointed maps). $A\smash B$ is pointed with point $(a_0,b_0)$. \item The smash is functorial: if $f:A\pmap A'$ and $g:B\pmap B'$ then $f\smash g:A\smash B\pmap A'\smash B'$. We write $A\smash g$ or $f\smash B$ if one of the functions is the identity function. \item Smash preserves composition, which gives rise to the interchange law: - $(f' \o f)\smash (g' \o g) \sim f' \smash g' \o f \smash g$ + $i:(f' \o f)\smash (g' \o g) \sim f' \smash g' \o f \smash g$ \item If $p:f\sim f'$ and $q:g\sim g'$ then $p\smash q:f\smash g\sim f'\smash g'$. This operation preserves reflexivities, symmetries and transitivies. - \item $f\smash0\sim0$ and $0\smash g\sim 0$. + \item There are homotopies $f\smash0\sim0$ and $0\smash g\sim 0$ such that the following diagrams + commute for given homotopies $p : f\sim f'$ and $q : g\sim g'$. + \begin{center} +\begin{tikzcd} +f\smash 0 \arrow[rr, equals,"p\smash1"]\arrow[dr,equals] & & +f'\smash 0\arrow[dl,equals] \\ +& 0 & +\end{tikzcd} +\qquad +\begin{tikzcd} +0\smash g\arrow[rr, equals,"1\smash q"]\arrow[dr,equals] & & +0\smash g'\arrow[dl,equals] \\ +& 0 & +\end{tikzcd} +\end{center} + \end{itemize} \end{lem} @@ -87,8 +107,8 @@ \begin{center} \begin{tikzcd} (f_2 \o f_1)\smash (g_2 \o 0) \arrow[r, equals]\arrow[dd,equals] & -(f_2 \smash g_1)\o (f_1 \smash 0)\arrow[d,equals] \\ -& (f_2 \smash g_1)\o 0\arrow[d,equals] \\ +(f_2 \smash g_2)\o (f_1 \smash 0)\arrow[d,equals] \\ +& (f_2 \smash g_2)\o 0\arrow[d,equals] \\ (f_2 \o f_1)\smash 0 \arrow[r,equals] & 0 \end{tikzcd} @@ -104,8 +124,24 @@ \end{lem} \begin{proof} -We will only do the case where $g_1\jdeq 0$, the other case is similar (but slightly easier). In this case, we need to show that the following diagram commutes. -Proof to do. + We will only do the case where $g_1\jdeq 0$, i.e. fill the diagram on the left. The other case is + similar (but slightly easier). First apply induction on the paths that $f_2$, $f_1$ and $g_2$ + respect the basepoint. In this case $g_2\o0$ is definitionally equal to $0$, and the canonical + proof that $g_2\o 0~0$ is (definitionally) equal to reflexivity. This means that the homotopy + $(f_2 \o f_1)\smash (g_2 \o 0)~(f_2 \o f_1)\smash 0$ is also equal to reflexivity. + + For the underlying homotopy, take $x : A_1\smash B_1$. We apply induction on $x$. + Suppose $x\equiv(a,b)$ for $a:A_1$ and $b:B_1$. Then we have to fill the square (denote the basepoints of $A_i$ and $B_i$ by $a_i$ and $b_i$) + + \begin{center} + \begin{tikzcd} + (f_2(f_1(a)),g_2(b_2))\arrow[r, equals,"1"]\arrow[dd,equals,"1"] & + (f_2(f_1(a)),g_2(b_2))\arrow[d,equals] \\ + & (f_2(a_2),g_2(b_2))\o (f_1 \smash g_1)\arrow[d,equals] \\ + (f_2(f_1(a)),y_0) \arrow[r,equals,"1"] & + (x_0,y_0) + \end{tikzcd} + \end{center} \end{proof} \begin{thm}\label{thm:smash-functor-right} @@ -138,8 +174,9 @@ which is natural in $A$, $B$ and $C$. (note: $(A\smash C\pmap B\smash C)$ is bot \end{tikzcd} \end{center} Let $k:A\pmap B$. Then as homotopy the naturality in $A$ becomes -$(k\o f)\smash C=k\smash C\o f\smash C$. To prove an equality between pointed maps, we need to give a pointed homotopy, which is given by interchange. To show that this homotopy -is pointed, we need to fill the following square, which follows from \autoref{lem:smash-coh}. +$(k\o f)\smash C=k\smash C\o f\smash C$. To prove an equality between pointed maps, we need to give +a pointed homotopy, which is given by interchange. To show that this homotopy is pointed, we need to +fill the following square (after reducing out the applications of function extensinality), which follows from \autoref{lem:smash-coh}. \begin{center} \begin{tikzcd} (0 \o f)\smash C \arrow[r, equals]\arrow[dd,equals] & @@ -161,20 +198,28 @@ square, which follows from \autoref{lem:smash-coh}. 0 \end{tikzcd} \end{center} -The naturality in $C$ is harder. For the underlying homotopy we need to show -$B\smash h\o g\smash C=g\smash C'\o A\smash h$. This follows by applying interchange twice: -$$B\smash h\o g\smash C\sim(\idfunc[B]\o g)\smash(h\o\idfunc[C])\sim(g\o\idfunc[A])\smash(\idfunc[C']\o h)\sim g\smash C'\o A\smash h.$$ +The naturality in $C$ is a bit harder. For the underlying homotopy we need to show +$B\smash h\o k\smash C=k\smash C'\o A\smash h$. This follows by applying interchange twice: +$$B\smash h\o k\smash C\sim(\idfunc[B]\o k)\smash(h\o\idfunc[C])\sim(k\o\idfunc[A])\smash(\idfunc[C']\o h)\sim k\smash C'\o A\smash h.$$ To show that this homotopy is pointed, we need to fill the following square: -% \begin{center} -% \begin{tikzcd} -% (B\smash h\o g\smash C) \arrow[r, equals]\arrow[dd,equals] & -% (g \smash C)\o (0 \smash C)\arrow[d,equals] \\ -% & (g\smash C) \o 0\arrow[d,equals] \\ -% 0\smash C \arrow[r,equals] & -% 0 -% \end{tikzcd} -% \end{center} - +\begin{center} + \begin{tikzcd} + B\smash h\o 0\smash C \arrow[r, equals]\arrow[d,equals] & + (\idfunc[B]\o 0)\smash(h\o\idfunc[C]) \arrow[r, equals]\arrow[d,equals] & + (0\o\idfunc[A])\smash(\idfunc[C']\o h)\arrow[r, equals]\arrow[d,equals] & + 0\smash C'\o A\smash h\arrow[d,equals] \\ + B\smash h\o 0 \arrow[d,equals] & + 0\smash(h\o\idfunc[C]) \arrow[r, equals]\arrow[d,equals] & + 0\smash(\idfunc[C']\o h) \arrow[d,equals] & + 0\o A\smash h\arrow[d,equals] \\ + B\smash h\o 0 \arrow[r, equals] & + 0 \arrow[r, equals] & + 0 \arrow[r, equals] & + 0 + \end{tikzcd} +\end{center} +The left and the right squares are filled by \autoref{lem:smash-coh}. The squares in the middle +are filled by (corollaries of) \autoref{lem:smash-general}. \end{proof} \section{Adjunction}