A more useful lemma!
This commit is contained in:
parent
32a6cc639d
commit
b6394b9750
1 changed files with 4 additions and 1 deletions
|
@ -47,8 +47,11 @@ namespace homology
|
||||||
... = Hh theory n (pmap.mk f (h pt ⬝ respect_pt g)) x : by exact Hh_homotopy' n f (respect_pt f) (h pt ⬝ respect_pt g) x
|
... = Hh theory n (pmap.mk f (h pt ⬝ respect_pt g)) x : by exact Hh_homotopy' n f (respect_pt f) (h pt ⬝ respect_pt g) x
|
||||||
... = Hh theory n g x : by exact ap (λ f, Hh theory n f x) (@pmap_eq _ _ (pmap.mk f (h pt ⬝ respect_pt g)) _ h (refl (h pt ⬝ respect_pt g)))
|
... = Hh theory n g x : by exact ap (λ f, Hh theory n f x) (@pmap_eq _ _ (pmap.mk f (h pt ⬝ respect_pt g)) _ h (refl (h pt ⬝ respect_pt g)))
|
||||||
|
|
||||||
definition is_equiv_Hh (n : ℤ) {A B : Type*} (e : A ≃* B) : is_equiv (Hh theory n e) :=
|
definition HH_isomorphism (n : ℤ) {A B : Type*} (e : A ≃* B)
|
||||||
|
: HH theory n A ≃g HH theory n B :=
|
||||||
begin
|
begin
|
||||||
|
fapply isomorphism.mk,
|
||||||
|
{ exact Hh theory n e },
|
||||||
fapply adjointify,
|
fapply adjointify,
|
||||||
{ exact Hh theory n e⁻¹ᵉ* },
|
{ exact Hh theory n e⁻¹ᵉ* },
|
||||||
{ intro x, exact calc
|
{ intro x, exact calc
|
||||||
|
|
Loading…
Reference in a new issue