use have instead of assert
This commit is contained in:
parent
1213001a6a
commit
b7c4f3b6a7
2 changed files with 30 additions and 18 deletions
|
@ -105,12 +105,14 @@ namespace group
|
|||
|
||||
definition is_set_homomorphism [instance] (G₁ G₂ : Group) : is_set (G₁ →g G₂) :=
|
||||
begin
|
||||
assert H : G₁ →g G₂ ≃ Σ(f : G₁ → G₂), Π(g₁ g₂ : G₁), f (g₁ * g₂) = f g₁ * f g₂,
|
||||
{ fapply equiv.MK,
|
||||
have H : G₁ →g G₂ ≃ Σ(f : G₁ → G₂), Π(g₁ g₂ : G₁), f (g₁ * g₂) = f g₁ * f g₂,
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ intro φ, induction φ, constructor, assumption},
|
||||
{ intro v, induction v, constructor, assumption},
|
||||
{ intro v, induction v, reflexivity},
|
||||
{ intro φ, induction φ, reflexivity}},
|
||||
{ intro φ, induction φ, reflexivity}
|
||||
end,
|
||||
apply is_trunc_equiv_closed_rev, exact H
|
||||
end
|
||||
|
||||
|
|
|
@ -206,10 +206,12 @@ namespace chain_complex
|
|||
: is_exact_at_t (transfer_type_chain_complex2 X f c @g @e @p) m :=
|
||||
begin
|
||||
intro y q, esimp at *,
|
||||
assert H2 : tcc_to_fn X (f m) ((equiv_of_eq (ap (λx, X x) (c m)))⁻¹ᵉ (e⁻¹ y)) = pt,
|
||||
{ refine _ ⬝ ap e⁻¹ᵉ* q ⬝ (respect_pt (e⁻¹ᵉ*)), apply eq_inv_of_eq, clear q, revert y,
|
||||
have H2 : tcc_to_fn X (f m) ((equiv_of_eq (ap (λx, X x) (c m)))⁻¹ᵉ (e⁻¹ y)) = pt,
|
||||
begin
|
||||
refine _ ⬝ ap e⁻¹ᵉ* q ⬝ (respect_pt (e⁻¹ᵉ*)), apply eq_inv_of_eq, clear q, revert y,
|
||||
refine inv_homotopy_of_homotopy (pequiv.to_equiv e) _,
|
||||
apply inv_homotopy_of_homotopy, apply p},
|
||||
apply inv_homotopy_of_homotopy, apply p
|
||||
end,
|
||||
induction (H _ H2) with x r,
|
||||
refine fiber.mk (e (cast (ap (λx, X x) (c (S m))) (cast (ap (λx, X (S x)) (c m)) x))) _,
|
||||
refine (p _)⁻¹ ⬝ _,
|
||||
|
@ -293,10 +295,12 @@ namespace chain_complex
|
|||
{n : N} (H : is_exact_at X n) : is_exact_at (transfer_chain_complex X @g @e @p) n :=
|
||||
begin
|
||||
intro y q, esimp at *,
|
||||
assert H2 : cc_to_fn X n (e⁻¹ᵉ* y) = pt,
|
||||
{ refine (inv_commute (λn, equiv_of_pequiv e) _ _ @p _)⁻¹ᵖ ⬝ _,
|
||||
have H2 : cc_to_fn X n (e⁻¹ᵉ* y) = pt,
|
||||
begin
|
||||
refine (inv_commute (λn, equiv_of_pequiv e) _ _ @p _)⁻¹ᵖ ⬝ _,
|
||||
refine ap _ q ⬝ _,
|
||||
exact respect_pt e⁻¹ᵉ*},
|
||||
exact respect_pt e⁻¹ᵉ*
|
||||
end,
|
||||
induction (H _ H2) with x,
|
||||
induction x with x r,
|
||||
refine image.mk (e x) _,
|
||||
|
@ -336,12 +340,14 @@ namespace chain_complex
|
|||
chain_complex.mk Y @g
|
||||
begin
|
||||
refine equiv_rect f _ _, intro n,
|
||||
assert H : Π (x : Y (f (S (S n)))), g (c n ▸ g (c (S n) ▸ x)) = pt,
|
||||
{ apply equiv_rect (equiv_of_pequiv e), intro x,
|
||||
have H : Π (x : Y (f (S (S n)))), g (c n ▸ g (c (S n) ▸ x)) = pt,
|
||||
begin
|
||||
apply equiv_rect (equiv_of_pequiv e), intro x,
|
||||
refine ap (λx, g (c n ▸ x)) (@p (S n) x)⁻¹ᵖ ⬝ _,
|
||||
refine (p _)⁻¹ ⬝ _,
|
||||
refine ap e (cc_is_chain_complex X n _) ⬝ _,
|
||||
apply respect_pt},
|
||||
apply respect_pt
|
||||
end,
|
||||
refine pi.pi_functor _ _ H,
|
||||
{ intro x, exact (c (S n))⁻¹ ▸ (c n)⁻¹ ▸ x}, -- with implicit arguments, this is:
|
||||
-- transport (λx, Y x) (c (S n))⁻¹ (transport (λx, Y (S x)) (c n)⁻¹ x)
|
||||
|
@ -355,10 +361,12 @@ namespace chain_complex
|
|||
{n : N} (H : is_exact_at X n) : is_exact_at (transfer_chain_complex2' X f c @g @e @p) (f n) :=
|
||||
begin
|
||||
intro y q, esimp at *,
|
||||
assert H2 : cc_to_fn X n (e⁻¹ᵉ* ((c n)⁻¹ ▸ y)) = pt,
|
||||
{ refine (inv_commute (λn, equiv_of_pequiv e) _ _ @p _)⁻¹ᵖ ⬝ _,
|
||||
have H2 : cc_to_fn X n (e⁻¹ᵉ* ((c n)⁻¹ ▸ y)) = pt,
|
||||
begin
|
||||
refine (inv_commute (λn, equiv_of_pequiv e) _ _ @p _)⁻¹ᵖ ⬝ _,
|
||||
rewrite [tr_inv_tr, q],
|
||||
exact respect_pt e⁻¹ᵉ*},
|
||||
exact respect_pt e⁻¹ᵉ*
|
||||
end,
|
||||
induction (H _ H2) with x,
|
||||
induction x with x r,
|
||||
refine image.mk (c n ▸ c (S n) ▸ e x) _,
|
||||
|
@ -448,10 +456,12 @@ namespace chain_complex
|
|||
-- (H : is_exact_at_lg X n) : is_exact_at_lg (transfer_left_group_chain_complex X @g @e @p) n :=
|
||||
-- begin
|
||||
-- intro y q, esimp at *,
|
||||
-- assert H2 : lgcc_to_fn X n (e⁻¹ᵉ* y) = pt,
|
||||
-- { refine (inv_commute (λn, equiv_of_pequiv e) _ _ @p _)⁻¹ᵖ ⬝ _,
|
||||
-- have H2 : lgcc_to_fn X n (e⁻¹ᵉ* y) = pt,
|
||||
-- begin
|
||||
-- refine (inv_commute (λn, equiv_of_pequiv e) _ _ @p _)⁻¹ᵖ ⬝ _,
|
||||
-- refine ap _ q ⬝ _,
|
||||
-- exact respect_pt e⁻¹ᵉ*},
|
||||
-- exact respect_pt e⁻¹ᵉ*
|
||||
-- end,
|
||||
-- cases (H _ H2) with x r,
|
||||
-- refine image.mk (e x) _,
|
||||
-- refine (p x)⁻¹ ⬝ _,
|
||||
|
|
Loading…
Reference in a new issue