work on functorial action of prespectrum homotopy groups
This commit is contained in:
parent
d057ddec51
commit
b8de7ffd80
3 changed files with 58 additions and 3 deletions
|
@ -283,7 +283,7 @@ namespace spectrum
|
|||
refine _ ∘g π→g[k+2] (glue E _),
|
||||
refine (ghomotopy_group_succ_in _ (k+1))⁻¹ᵍ ∘g _,
|
||||
refine homotopy_group_isomorphism_of_pequiv (k+1)
|
||||
(loop_pequiv_loop (pequiv_of_eq (ap E !add.assoc)))
|
||||
(loop_pequiv_loop (pequiv_of_eq (ap E (add.assoc (-n - 2) k 1))))
|
||||
end
|
||||
|
||||
definition pshomotopy_group (n : ℤ) (E : prespectrum) : AbGroup :=
|
||||
|
@ -295,7 +295,13 @@ namespace spectrum
|
|||
πₚₛ[n] E →g πₚₛ[n] F :=
|
||||
group.seq_colim_functor (λk, π→g[k+2] (f (-n - 2 +[ℤ] k)))
|
||||
begin
|
||||
exact sorry
|
||||
intro k,
|
||||
note sq1 := homotopy_group_homomorphism_psquare (k+2) (ptranspose (smap.glue_square f (-n - 2 +[ℤ] k))),
|
||||
note sq2 := homotopy_group_functor_hsquare (k+2) (ap1_psquare (ptransport_natural E F f (add.assoc (-n - 2) k 1))),
|
||||
note sq3 := (homotopy_group_succ_in_natural (k+2) (f (-n - 2 +[ℤ] (k+1))))⁻¹ʰᵗʸʰ,
|
||||
note sq4 := hsquare_of_psquare sq2,
|
||||
note rect := sq1 ⬝htyh sq4 ⬝htyh sq3,
|
||||
exact sorry --sq1 ⬝htyh sq4 ⬝htyh sq3,
|
||||
end
|
||||
|
||||
notation `πₚₛ→[`:95 n:0 `]`:0 := pshomotopy_group_fun n
|
||||
|
@ -622,7 +628,7 @@ open fwedge
|
|||
fconstructor,
|
||||
{ intro n, exact fwedge (λ i, X i n) },
|
||||
{ intro n, fapply fwedge_pmap,
|
||||
intro i, exact Ω→ !pinl ∘* !glue
|
||||
intro i, exact Ω→ !pinl ∘* !glue
|
||||
}
|
||||
end
|
||||
|
||||
|
|
|
@ -93,6 +93,24 @@ namespace eq
|
|||
-- (p : f ~ g) (q : a = a') : natural_square p q = square_of_pathover (apd p q) :=
|
||||
-- idp
|
||||
|
||||
section hsquare
|
||||
variables {A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type}
|
||||
{f₁₀ : A₀₀ → A₂₀} {f₃₀ : A₂₀ → A₄₀}
|
||||
{f₀₁ : A₀₀ → A₀₂} {f₂₁ : A₂₀ → A₂₂} {f₄₁ : A₄₀ → A₄₂}
|
||||
{f₁₂ : A₀₂ → A₂₂} {f₃₂ : A₂₂ → A₄₂}
|
||||
{f₀₃ : A₀₂ → A₀₄} {f₂₃ : A₂₂ → A₂₄} {f₄₃ : A₄₂ → A₄₄}
|
||||
{f₁₄ : A₀₄ → A₂₄} {f₃₄ : A₂₄ → A₄₄}
|
||||
|
||||
definition trunc_functor_hsquare (n : ℕ₋₂) (h : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
hsquare (trunc_functor n f₁₀) (trunc_functor n f₁₂)
|
||||
(trunc_functor n f₀₁) (trunc_functor n f₂₁) :=
|
||||
λa, !trunc_functor_compose⁻¹ ⬝ trunc_functor_homotopy n h a ⬝ !trunc_functor_compose
|
||||
|
||||
end hsquare
|
||||
definition homotopy_group_succ_in_natural (n : ℕ) {A B : Type*} (f : A →* B) :
|
||||
hsquare (homotopy_group_succ_in A n) (homotopy_group_succ_in B n) (π→[n+1] f) (π→[n] (Ω→ f)) :=
|
||||
trunc_functor_hsquare _ (loopn_succ_in_natural n f)⁻¹*
|
||||
|
||||
end eq open eq
|
||||
|
||||
namespace pmap
|
||||
|
|
|
@ -151,4 +151,35 @@ namespace pointed
|
|||
esimp, exact !idp_con
|
||||
end
|
||||
|
||||
-- this should replace pnatural_square
|
||||
definition pnatural_square2 {A B : Type} (X : B → Type*) (Y : B → Type*) {f g : A → B}
|
||||
(h : Πa, X (f a) →* Y (g a)) {a a' : A} (p : a = a') :
|
||||
h a' ∘* ptransport X (ap f p) ~* ptransport Y (ap g p) ∘* h a :=
|
||||
by induction p; exact !pcompose_pid ⬝* !pid_pcompose⁻¹*
|
||||
|
||||
definition ptransport_natural {A : Type} (X : A → Type*) (Y : A → Type*)
|
||||
(h : Πa, X a →* Y a) {a a' : A} (p : a = a') :
|
||||
h a' ∘* ptransport X p ~* ptransport Y p ∘* h a :=
|
||||
by induction p; exact !pcompose_pid ⬝* !pid_pcompose⁻¹*
|
||||
|
||||
section psquare
|
||||
variables {A A' A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type*}
|
||||
{f₁₀ f₁₀' : A₀₀ →* A₂₀} {f₃₀ : A₂₀ →* A₄₀}
|
||||
{f₀₁ f₀₁' : A₀₀ →* A₀₂} {f₂₁ f₂₁' : A₂₀ →* A₂₂} {f₄₁ : A₄₀ →* A₄₂}
|
||||
{f₁₂ f₁₂' : A₀₂ →* A₂₂} {f₃₂ : A₂₂ →* A₄₂}
|
||||
{f₀₃ : A₀₂ →* A₀₄} {f₂₃ : A₂₂ →* A₂₄} {f₄₃ : A₄₂ →* A₄₄}
|
||||
{f₁₄ : A₀₄ →* A₂₄} {f₃₄ : A₂₄ →* A₄₄}
|
||||
|
||||
definition ptranspose (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : psquare f₀₁ f₂₁ f₁₀ f₁₂ :=
|
||||
p⁻¹*
|
||||
|
||||
definition hsquare_of_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : hsquare f₁₀ f₁₂ f₀₁ f₂₁ :=
|
||||
p
|
||||
|
||||
definition homotopy_group_functor_hsquare (n : ℕ) (h : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
psquare (π→[n] f₁₀) (π→[n] f₁₂)
|
||||
(π→[n] f₀₁) (π→[n] f₂₁) :=
|
||||
sorry
|
||||
|
||||
end psquare
|
||||
end pointed
|
||||
|
|
Loading…
Reference in a new issue