From ba5648fb874a3bcb972764e368003bd7fb3094ca Mon Sep 17 00:00:00 2001 From: Floris van Doorn Date: Mon, 10 Sep 2018 18:02:07 +0200 Subject: [PATCH] start on construction of cup product of EM-spaces --- algebra/ring.hlean | 54 +++++++++++++++++++++++++++++++++++++++++++ homotopy/EMRing.hlean | 53 ++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 107 insertions(+) create mode 100644 algebra/ring.hlean create mode 100644 homotopy/EMRing.hlean diff --git a/algebra/ring.hlean b/algebra/ring.hlean new file mode 100644 index 0000000..be89caf --- /dev/null +++ b/algebra/ring.hlean @@ -0,0 +1,54 @@ +-- Authors: Floris van Doorn + +import algebra.ring .direct_sum ..heq ..move_to_lib + +open algebra group eq is_trunc sigma + +namespace algebra +definition AbGroup_of_Ring [constructor] (R : Ring) : AbGroup := +AbGroup.mk R (add_ab_group_of_ring R) + +definition ring_AbGroup_of_Ring [instance] (R : Ring) : ring (AbGroup_of_Ring R) := +Ring.struct R + +definition ring_right_action [constructor] {R : Ring} (r : R) : + AbGroup_of_Ring R →g AbGroup_of_Ring R := +homomorphism.mk (λs, s * r) (λs s', !right_distrib) + +definition ring_of_ab_group [constructor] (G : Type) [ab_group G] (m : G → G → G) (o : G) + (lm : Πg, m o g = g) (rm : Πg, m g o = g) (am : Πg₁ g₂ g₃, m (m g₁ g₂) g₃ = m g₁ (m g₂ g₃)) + (ld : Πg₁ g₂ g₃, m g₁ (g₂ * g₃) = m g₁ g₂ * m g₁ g₃) + (rd : Πg₁ g₂ g₃, m (g₁ * g₂) g₃ = m g₁ g₃ * m g₂ g₃) : ring G := +ring.mk _ mul mul.assoc 1 one_mul mul_one inv mul.left_inv mul.comm m am o lm rm ld rd + +definition Ring_of_AbGroup [constructor] (G : AbGroup) (m : G → G → G) (o : G) + (lm : Πg, m o g = g) (rm : Πg, m g o = g) (am : Πg₁ g₂ g₃, m (m g₁ g₂) g₃ = m g₁ (m g₂ g₃)) + (ld : Πg₁ g₂ g₃, m g₁ (g₂ * g₃) = m g₁ g₂ * m g₁ g₃) + (rd : Πg₁ g₂ g₃, m (g₁ * g₂) g₃ = m g₁ g₃ * m g₂ g₃) : Ring := +Ring.mk G (ring_of_ab_group G m o lm rm am ld rd) + +/- graded ring -/ + +structure graded_ring (M : Monoid) := + (R : M → AddAbGroup) + (mul : Π⦃m m'⦄, R m → R m' → R (m * m')) + (one : R 1) + (mul_one : Π⦃m⦄ (r : R m), mul r one ==[R] r) + (one_mul : Π⦃m⦄ (r : R m), mul one r ==[R] r) + (mul_assoc : Π⦃m₁ m₂ m₃⦄ (r₁ : R m₁) (r₂ : R m₂) (r₃ : R m₃), + mul (mul r₁ r₂) r₃ ==[R] mul r₁ (mul r₂ r₃)) + (mul_left_distrib : Π⦃m₁ m₂⦄ (r₁ : R m₁) (r₂ r₂' : R m₂), + mul r₁ (r₂ + r₂') = mul r₁ r₂ + mul r₁ r₂') + (mul_right_distrib : Π⦃m₁ m₂⦄ (r₁ r₁' : R m₁) (r₂ : R m₂), + mul (r₁ + r₁') r₂ = mul r₁ r₂ + mul r₁' r₂) + + +attribute graded_ring.R [coercion] +infixl ` ** `:71 := graded_ring.mul + +-- definition ring_direct_sum {M : Monoid} (R : graded_ring M) : Ring := +-- Ring_of_AbGroup (dirsum R) _ (dirsum_incl R 1 (graded_ring.one R)) _ _ _ _ _ + + + +end algebra diff --git a/homotopy/EMRing.hlean b/homotopy/EMRing.hlean new file mode 100644 index 0000000..4b932fb --- /dev/null +++ b/homotopy/EMRing.hlean @@ -0,0 +1,53 @@ +-- Authors: Floris van Doorn + +import .EM .smash_adjoint ..algebra.ring + +open algebra eq EM is_equiv equiv is_trunc is_conn pointed trunc susp smash group nat +namespace EM + +definition EM1product_adj {R : Ring} : + EM1 (AbGroup_of_Ring R) →* ppmap (EM1 (AbGroup_of_Ring R)) (EMadd1 (AbGroup_of_Ring R) 1) := +begin + have is_trunc 1 (ppmap (EM1 (AbGroup_of_Ring R)) (EMadd1 (AbGroup_of_Ring R) 1)), + from is_trunc_pmap_of_is_conn _ _ _ _ _ _ (le.refl 2) !is_trunc_EMadd1, + fapply EM1_pmap, + { intro r, refine pfunext _ _, exact !loop_EM2⁻¹ᵉ* ∘* EM1_functor (ring_right_action r), }, + { intro r r', exact sorry } +end + +definition EMproduct_map {G H K : AbGroup} (φ : G → H →g K) (n m : ℕ) (g : G) : + EMadd1 H n →* EMadd1 K n := +begin + fapply EMadd1_functor (φ g) n +end + +definition EM0EMadd1product {G H K : AbGroup} (φ : G →g H →gg K) (n : ℕ) : + G →* EMadd1 H n →** EMadd1 K n := +EMadd1_pfunctor H K n ∘* pmap_of_homomorphism φ + +definition EMadd1product {G H K : AbGroup} (φ : G →g H →gg K) (n m : ℕ) : + EMadd1 G n →* EMadd1 H m →** EMadd1 K (m + succ n) := +begin + assert H1 : is_trunc n.+1 (EMadd1 H m →** EMadd1 K (m + succ n)), + { refine is_trunc_pmap_of_is_conn _ (m.-1) !is_conn_EMadd1 _ _ _ _ !is_trunc_EMadd1, + exact le_of_eq (trunc_index.of_nat_add_plus_two_of_nat m n)⁻¹ᵖ }, + fapply EMadd1_pmap, + { refine (loopn_ppmap_pequiv _ _ _)⁻¹ᵉ* ∘* ppcompose_left !loopn_EMadd1_add⁻¹ᵉ* ∘* + EM0EMadd1product φ m }, + { exact sorry } +end + +definition EMproduct {G H K : AbGroup} (φ : G →g H →gg K) (n m : ℕ) : + EM G n →* EM H m →** EM K (m + n) := +begin + cases n with n, + { cases m with m, + { exact pmap_of_homomorphism2 φ }, + { exact EM0EMadd1product φ m }}, + { cases m with m, + { exact ppcompose_left (ptransport (EMadd1 K) (zero_add n)⁻¹) ∘* + pmap_swap_map (EM0EMadd1product (homomorphism_swap φ) n) }, + { exact ppcompose_left (ptransport (EMadd1 K) !succ_add⁻¹) ∘* EMadd1product φ n m }} +end + +end EM