isomorphism of truncations of h-groups
This commit is contained in:
parent
b8bb1ca67d
commit
bb3995c573
1 changed files with 7 additions and 0 deletions
|
@ -439,6 +439,13 @@ namespace group
|
||||||
definition isomorphism_of_is_contr {G H : Group} (hG : is_contr G) (hH : is_contr H) : G ≃g H :=
|
definition isomorphism_of_is_contr {G H : Group} (hG : is_contr G) (hH : is_contr H) : G ≃g H :=
|
||||||
trivial_group_of_is_contr G ⬝g (trivial_group_of_is_contr H)⁻¹ᵍ
|
trivial_group_of_is_contr G ⬝g (trivial_group_of_is_contr H)⁻¹ᵍ
|
||||||
|
|
||||||
|
definition trunc_isomorphism_of_equiv {A B : Type} [inf_group A] [inf_group B] (f : A ≃ B)
|
||||||
|
(h : is_mul_hom f) : Group.mk (trunc 0 A) (trunc_group A) ≃g Group.mk (trunc 0 B) (trunc_group B) :=
|
||||||
|
begin
|
||||||
|
apply isomorphism_of_equiv (equiv.mk (trunc_functor 0 f) (is_equiv_trunc_functor 0 f)), intros x x',
|
||||||
|
induction x with a, induction x' with a', apply ap tr, exact h a a'
|
||||||
|
end
|
||||||
|
|
||||||
end group open group
|
end group open group
|
||||||
|
|
||||||
namespace fiber
|
namespace fiber
|
||||||
|
|
Loading…
Reference in a new issue