From bdf0d1bb0e548aeefb1f16117b8d0502c4f30245 Mon Sep 17 00:00:00 2001 From: Floris van Doorn Date: Tue, 23 May 2017 00:32:03 -0400 Subject: [PATCH] small cleanup on modules --- algebra/left_module.hlean | 3 ++- algebra/module_exact_couple.hlean | 11 ++++++----- 2 files changed, 8 insertions(+), 6 deletions(-) diff --git a/algebra/left_module.hlean b/algebra/left_module.hlean index 29727f8..a8db111 100644 --- a/algebra/left_module.hlean +++ b/algebra/left_module.hlean @@ -401,7 +401,7 @@ end structure short_exact_mod (A B C : LeftModule R) := (f : A →lm B) (g : B →lm C) - (h : @is_short_exact _ _ (pType.mk _ 0) f g) + (h : @is_short_exact A B C f g) local abbreviation g_of_lm := @group_homomorphism_of_lm_homomorphism definition short_exact_mod_of_is_exact {X A B C Y : LeftModule R} @@ -421,6 +421,7 @@ end (λa, to_right_inv (equiv_of_isomorphism eB) _) (λb, to_right_inv (equiv_of_isomorphism eC) _) (short_exact_mod.h H)) + end end diff --git a/algebra/module_exact_couple.hlean b/algebra/module_exact_couple.hlean index c595e6a..bbf0c30 100644 --- a/algebra/module_exact_couple.hlean +++ b/algebra/module_exact_couple.hlean @@ -97,8 +97,6 @@ namespace left_module graded_image_elim (graded_homology_intro d d ∘gm graded_hom_lift j j_lemma1) j_lemma2 -- degree deg j - deg i - -- mk_out_in (deg f) (deg g) - lemma k_lemma1 ⦃x : I⦄ (m : E x) (p : d x m = 0) : image (i ← (deg k x)) (k x m) := gmod_ker_in_im (exact_couple.ij X) (k x m) p @@ -381,7 +379,7 @@ namespace left_module definition Dinfstable {x y : I} {r : ℕ} (Hr : B' y ≤ r) (p : x = y) : Dinf y ≃lm D (page r) x := by symmetry; induction p; induction Hr with r Hr IH; reflexivity; exact Dstable Hr ⬝lm IH - parameters {x : I} + parameters (x : I) definition r (n : ℕ) : ℕ := max (max (B (deg (j X) (deg (k X) x)) + n + 1) (B3 ((deg (i X))^[n] x))) @@ -475,11 +473,12 @@ namespace pointed exact π→g[n+2] f end - definition homotopy_group_conn_functor : Π(n : ℤ) {A B : Type*[1]} (f : A →* B), πc[n] A →g πc[n] B + definition homotopy_group_conn_functor : + Π(n : ℤ) {A B : Type*[1]} (f : A →* B), πc[n] A →g πc[n] B | (of_nat n) A B f := homotopy_group_conn_nat_functor n f | (-[1+ n]) A B f := homomorphism_of_is_contr_right _ _ - notation `π→ag'[`:95 n:0 `]`:0 := homotopy_group_conn_functor n + notation `π→c[`:95 n:0 `]`:0 := homotopy_group_conn_functor n section open prod prod.ops fiber @@ -493,6 +492,8 @@ namespace pointed definition E_sequence : graded_module rℤ I := λv, LeftModule_int_of_AbGroup (πc[v.2] (pconntype.mk (pfiber (f (v.1))) !Hf pt)) + /- first need LES of these connected homotopy groups -/ + -- definition exact_couple_sequence : exact_couple rℤ I := -- exact_couple.mk D_sequence E_sequence sorry sorry sorry sorry sorry sorry