messy quotient groups
wip
This commit is contained in:
parent
d3cba4b95d
commit
bffab663bb
1 changed files with 57 additions and 19 deletions
|
@ -247,19 +247,6 @@ definition ab_group_quotient_homomorphism (A B : AbGroup)(K : subgroup_rel A)(L
|
||||||
exact @ab_gq_map_eq_one B L (f a) (p a k),
|
exact @ab_gq_map_eq_one B L (f a) (p a k),
|
||||||
end
|
end
|
||||||
|
|
||||||
definition ab_group_first_iso_thm (A B : AbGroup) (f : A →g B) : quotient_ab_group (kernel_subgroup f) ≃g ab_image f :=
|
|
||||||
begin
|
|
||||||
fapply isomorphism.mk,
|
|
||||||
fapply quotient_group_elim,
|
|
||||||
fapply image_lift,
|
|
||||||
intro a,
|
|
||||||
intro k,
|
|
||||||
fapply image_incl_eq_one,
|
|
||||||
exact k,
|
|
||||||
exact sorry,
|
|
||||||
-- show that the above map is injective and surjective.
|
|
||||||
end
|
|
||||||
|
|
||||||
definition ab_group_kernel_factor {A B C: AbGroup} (f : A →g B)(g : A →g C){i : C →g B}(H : f = i ∘g g )
|
definition ab_group_kernel_factor {A B C: AbGroup} (f : A →g B)(g : A →g C){i : C →g B}(H : f = i ∘g g )
|
||||||
: Π a:A , kernel_subgroup(g)(a) → kernel_subgroup(f)(a) :=
|
: Π a:A , kernel_subgroup(g)(a) → kernel_subgroup(f)(a) :=
|
||||||
begin
|
begin
|
||||||
|
@ -271,6 +258,28 @@ definition ab_group_kernel_factor {A B C: AbGroup} (f : A →g B)(g : A →g C){
|
||||||
... = 1 : respect_one i
|
... = 1 : respect_one i
|
||||||
end
|
end
|
||||||
|
|
||||||
|
definition ab_group_triv_kernel_factor {A B C: AbGroup} (f : A →g B)(g : A →g C){i : C →g B}(H : f = i ∘g g ) :
|
||||||
|
is_trivial_subgroup _ (kernel_subgroup(f)) → is_trivial_subgroup _ (kernel_subgroup(g)) :=
|
||||||
|
begin
|
||||||
|
intro p,
|
||||||
|
intro a,
|
||||||
|
intro q,
|
||||||
|
fapply p,
|
||||||
|
exact ab_group_kernel_factor f g H a q
|
||||||
|
end
|
||||||
|
|
||||||
|
definition triv_kern_is_embedding {A B : AbGroup} (f : A →g B):
|
||||||
|
is_trivial_subgroup _ (kernel_subgroup(f)) → is_embedding(f) :=
|
||||||
|
begin
|
||||||
|
intro p,
|
||||||
|
fapply is_embedding_homomorphism,
|
||||||
|
intro a q,
|
||||||
|
apply p,
|
||||||
|
exact q
|
||||||
|
end
|
||||||
|
|
||||||
|
definition
|
||||||
|
|
||||||
definition ab_group_kernel_equivalent {A B : AbGroup} (C : AbGroup) (f : A →g B)(g : A →g C)(i : C →g B)(H : f = i ∘g g )(K : is_embedding i)
|
definition ab_group_kernel_equivalent {A B : AbGroup} (C : AbGroup) (f : A →g B)(g : A →g C)(i : C →g B)(H : f = i ∘g g )(K : is_embedding i)
|
||||||
: Π a:A , kernel_subgroup(g)(a) ↔ kernel_subgroup(f)(a) :=
|
: Π a:A , kernel_subgroup(g)(a) ↔ kernel_subgroup(f)(a) :=
|
||||||
begin
|
begin
|
||||||
|
@ -295,19 +304,48 @@ definition ab_group_kernel_image_lift (A B : AbGroup) (f : A →g B)
|
||||||
|
|
||||||
definition ab_group_kernel_quotient_to_image {A B : AbGroup} (f : A →g B)
|
definition ab_group_kernel_quotient_to_image {A B : AbGroup} (f : A →g B)
|
||||||
: quotient_ab_group (kernel_subgroup f) →g ab_image (f) :=
|
: quotient_ab_group (kernel_subgroup f) →g ab_image (f) :=
|
||||||
begin
|
begin
|
||||||
fapply quotient_group_elim (image_lift f), intro a, intro p,
|
fapply quotient_group_elim (image_lift f), intro a, intro p,
|
||||||
apply iff.mpr (ab_group_kernel_image_lift _ _ f a) p
|
apply iff.mpr (ab_group_kernel_image_lift _ _ f a) p
|
||||||
end
|
end
|
||||||
|
|
||||||
definition is_surjective_kernel_quotient_to_image {A B : AbGroup} (f : A →g B)
|
definition is_surjective_kernel_quotient_to_image {A B : AbGroup} (f : A →g B)
|
||||||
: is_surjective (ab_group_kernel_quotient_to_image f) :=
|
: is_surjective (ab_group_kernel_quotient_to_image f) :=
|
||||||
begin
|
begin
|
||||||
intro b, exact sorry
|
intro b, exact sorry
|
||||||
-- have H : is_surjective (image_lift f)
|
-- have H : is_surjective (image_lift f)
|
||||||
end
|
end
|
||||||
|
|
||||||
print iff.mpr
|
|
||||||
|
|
||||||
|
|
||||||
|
definition is_embedding_kernel_quotient_to_image {A B : AbGroup} (f : A →g B)
|
||||||
|
: is_embedding (ab_group_kernel_quotient_to_image f) :=
|
||||||
|
begin
|
||||||
|
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
definition ab_group_first_iso_thm (A B : AbGroup) (f : A →g B) : quotient_ab_group (kernel_subgroup f) ≃g ab_image f :=
|
||||||
|
begin
|
||||||
|
fapply isomorphism.mk,
|
||||||
|
fapply quotient_group_elim,
|
||||||
|
fapply image_lift,
|
||||||
|
intro a,
|
||||||
|
intro k,
|
||||||
|
fapply image_incl_eq_one,
|
||||||
|
exact k,
|
||||||
|
exact sorry,
|
||||||
|
-- show that the above map is injective and surjective.
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
-- print iff.mpr
|
||||||
/- set generating normal subgroup -/
|
/- set generating normal subgroup -/
|
||||||
|
|
||||||
section
|
section
|
||||||
|
|
Loading…
Reference in a new issue