fix left module namespace

This commit is contained in:
Jeremy Avigad 2017-03-30 15:43:54 -04:00
parent 4fd9c00755
commit c0a301e141
3 changed files with 8 additions and 11 deletions

View file

@ -8,9 +8,7 @@ Modules prod vector spaces over a ring.
(We use "left_module," which is more precise, because "module" is a keyword.) (We use "left_module," which is more precise, because "module" is a keyword.)
-/ -/
import algebra.field ..move_to_lib import algebra.field ..move_to_lib
open is_trunc pointed function sigma eq open is_trunc pointed function sigma eq algebra
namespace algebra
structure has_scalar [class] (F V : Type) := structure has_scalar [class] (F V : Type) :=
(smul : F → V → V) (smul : F → V → V)
@ -19,6 +17,8 @@ infixl ` • `:73 := has_scalar.smul
/- modules over a ring -/ /- modules over a ring -/
namespace left_module
structure left_module (R M : Type) [ringR : ring R] extends has_scalar R M, ab_group M renaming structure left_module (R M : Type) [ringR : ring R] extends has_scalar R M, ab_group M renaming
mul→add mul_assoc→add_assoc one→zero one_mul→zero_add mul_one→add_zero inv→neg mul→add mul_assoc→add_assoc one→zero one_mul→zero_add mul_one→add_zero inv→neg
mul_left_inv→add_left_inv mul_comm→add_comm := mul_left_inv→add_left_inv mul_comm→add_comm :=
@ -155,7 +155,7 @@ pointed.mk zero
definition pSet_of_LeftModule [coercion] {R : Ring} (M : LeftModule R) : Set* := definition pSet_of_LeftModule [coercion] {R : Ring} (M : LeftModule R) : Set* :=
pSet.mk' (LeftModule.carrier M) pSet.mk' (LeftModule.carrier M)
namespace left_module section
variable {R : Ring} variable {R : Ring}
structure homomorphism (M₁ M₂ : LeftModule R) : Type := structure homomorphism (M₁ M₂ : LeftModule R) : Type :=
@ -219,6 +219,6 @@ namespace left_module
end end
end end
end left_module end
end algebra end left_module

View file

@ -6,7 +6,7 @@ open eq pointed sigma fiber equiv is_equiv sigma.ops is_trunc nat trunc
open algebra function open algebra function
open chain_complex open chain_complex
open succ_str open succ_str
open algebra.left_module open left_module
structure module_chain_complex (R : Ring) (N : succ_str) : Type := structure module_chain_complex (R : Ring) (N : succ_str) : Type :=
(mod : N → LeftModule R) (mod : N → LeftModule R)

View file

@ -4,10 +4,7 @@ Author: Jeremy Avigad
import .module_chain_complex import .module_chain_complex
open eq pointed sigma fiber equiv is_equiv sigma.ops is_trunc nat trunc open eq pointed sigma fiber equiv is_equiv sigma.ops is_trunc nat trunc
open algebra function succ_str open algebra function succ_str
open left_module
-- TODO: reconcile these
open algebra.left_module -- name in left_module
open left_module -- namespace in hott library
section short_five section short_five
variable {R : Ring} variable {R : Ring}