Merge branch 'master' of https://github.com/cmu-phil/Spectral
This commit is contained in:
commit
c0a6e581e6
20 changed files with 339 additions and 1343 deletions
|
@ -21,12 +21,12 @@ namespace group
|
|||
definition Group_arrow (A : Type) (G : Group) : Group :=
|
||||
Group.mk (A → G) _
|
||||
|
||||
definition comm_group_arrow [instance] (A B : Type) [comm_group B] : comm_group (A → B) :=
|
||||
⦃comm_group, group_arrow A B,
|
||||
definition ab_group_arrow [instance] (A B : Type) [ab_group B] : ab_group (A → B) :=
|
||||
⦃ab_group, group_arrow A B,
|
||||
mul_comm := by intros; apply eq_of_homotopy; intro a; apply mul.comm⦄
|
||||
|
||||
definition CommGroup_arrow (A : Type) (G : CommGroup) : CommGroup :=
|
||||
CommGroup.mk (A → G) _
|
||||
definition AbGroup_arrow (A : Type) (G : AbGroup) : AbGroup :=
|
||||
AbGroup.mk (A → G) _
|
||||
|
||||
definition pgroup_ppmap [instance] (A B : Type*) [pgroup B] : pgroup (ppmap A B) :=
|
||||
begin
|
||||
|
@ -44,12 +44,12 @@ namespace group
|
|||
definition Group_pmap (A : Type*) (G : Group) : Group :=
|
||||
Group_of_pgroup (ppmap A (pType_of_Group G))
|
||||
|
||||
definition CommGroup_pmap (A : Type*) (G : CommGroup) : CommGroup :=
|
||||
CommGroup.mk (A →* pType_of_Group G)
|
||||
⦃ comm_group, Group.struct (Group_pmap A G),
|
||||
definition AbGroup_pmap (A : Type*) (G : AbGroup) : AbGroup :=
|
||||
AbGroup.mk (A →* pType_of_Group G)
|
||||
⦃ ab_group, Group.struct (Group_pmap A G),
|
||||
mul_comm := by intro f g; apply pmap_eq_of_homotopy; intro a; apply mul.comm ⦄
|
||||
|
||||
definition Group_pmap_homomorphism [constructor] {A A' : Type*} (f : A' →* A) (G : CommGroup) :
|
||||
definition Group_pmap_homomorphism [constructor] {A A' : Type*} (f : A' →* A) (G : AbGroup) :
|
||||
Group_pmap A G →g Group_pmap A' G :=
|
||||
begin
|
||||
fapply homomorphism.mk,
|
||||
|
|
|
@ -13,21 +13,21 @@ open eq algebra is_trunc set_quotient relation sigma prod sum list trunc functio
|
|||
namespace group
|
||||
|
||||
variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}
|
||||
{A B : CommGroup}
|
||||
{A B : AbGroup}
|
||||
|
||||
variables (X : Set) {l l' : list (X ⊎ X)}
|
||||
|
||||
section
|
||||
|
||||
parameters {I : Set} (Y : I → CommGroup)
|
||||
variables {A' : CommGroup}
|
||||
parameters {I : Set} (Y : I → AbGroup)
|
||||
variables {A' : AbGroup}
|
||||
|
||||
definition dirsum_carrier : CommGroup := free_comm_group (trunctype.mk (Σi, Y i) _)
|
||||
local abbreviation ι := @free_comm_group_inclusion
|
||||
definition dirsum_carrier : AbGroup := free_ab_group (trunctype.mk (Σi, Y i) _)
|
||||
local abbreviation ι [constructor] := @free_ab_group_inclusion
|
||||
inductive dirsum_rel : dirsum_carrier → Type :=
|
||||
| rmk : Πi y₁ y₂, dirsum_rel (ι ⟨i, y₁⟩ * ι ⟨i, y₂⟩ * (ι ⟨i, y₁ * y₂⟩)⁻¹)
|
||||
|
||||
definition dirsum : CommGroup := quotient_comm_group_gen dirsum_carrier (λg, ∥dirsum_rel g∥)
|
||||
definition dirsum : AbGroup := quotient_ab_group_gen dirsum_carrier (λg, ∥dirsum_rel g∥)
|
||||
|
||||
-- definition dirsum_carrier_incl [constructor] (i : I) : Y i →g dirsum_carrier :=
|
||||
|
||||
|
@ -35,26 +35,30 @@ namespace group
|
|||
homomorphism.mk (λy, class_of (ι ⟨i, y⟩))
|
||||
begin intro g h, symmetry, apply gqg_eq_of_rel, apply tr, apply dirsum_rel.rmk end
|
||||
|
||||
definition dirsum_elim [constructor] (f : Πi, Y i →g A') : dirsum →g A' :=
|
||||
definition dirsum_elim_resp_quotient (f : Πi, Y i →g A') (g : dirsum_carrier)
|
||||
(r : ∥dirsum_rel g∥) : free_ab_group_elim (λv, f v.1 v.2) g = 1 :=
|
||||
begin
|
||||
refine homomorphism.mk (gqg_elim _ (free_comm_group_elim (λv, f v.1 v.2)) _) _,
|
||||
{ intro g r, induction r with r, induction r,
|
||||
rewrite [to_respect_mul, to_respect_inv], apply mul_inv_eq_of_eq_mul,
|
||||
rewrite [one_mul], apply ap (free_comm_group_elim (λ v, group_fun (f v.1) v.2)),
|
||||
exact sorry
|
||||
},
|
||||
{ exact sorry }
|
||||
induction r with r, induction r,
|
||||
rewrite [to_respect_mul, to_respect_inv], apply mul_inv_eq_of_eq_mul,
|
||||
rewrite [one_mul, to_respect_mul, ▸*, ↑foldl, +one_mul, to_respect_mul]
|
||||
end
|
||||
|
||||
definition dirsum_elim [constructor] (f : Πi, Y i →g A') : dirsum →g A' :=
|
||||
gqg_elim _ (free_ab_group_elim (λv, f v.1 v.2)) (dirsum_elim_resp_quotient f)
|
||||
|
||||
definition dirsum_elim_compute (f : Πi, Y i →g A') (i : I) :
|
||||
dirsum_elim f ∘g dirsum_incl i ~ f i :=
|
||||
begin
|
||||
intro g, exact sorry
|
||||
intro g, apply one_mul
|
||||
end
|
||||
|
||||
definition dirsum_elim_unique (f : Πi, Y i →g A') (k : dirsum →g A')
|
||||
(H : Πi, k ∘g dirsum_incl i ~ f i) : k ~ dirsum_elim f :=
|
||||
sorry
|
||||
begin
|
||||
apply gqg_elim_unique,
|
||||
apply free_ab_group_elim_unique,
|
||||
intro x, induction x with i y, exact H i y
|
||||
end
|
||||
|
||||
|
||||
end
|
||||
|
|
|
@ -11,50 +11,50 @@ import algebra.group_theory hit.set_quotient types.sigma types.list types.sum .q
|
|||
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function group trunc
|
||||
equiv
|
||||
|
||||
structure is_exact {A B C : CommGroup} (f : A →g B) (g : B →g C) :=
|
||||
structure is_exact {A B C : AbGroup} (f : A →g B) (g : B →g C) :=
|
||||
( im_in_ker : Π(a:A), g (f a) = 1)
|
||||
( ker_in_im : Π(b:B), (g b = 1) → ∃(a:A), f a = b)
|
||||
( ker_in_im : Π(b:B), (g b = 1) → ∃(a:A), f a = b)
|
||||
|
||||
definition is_differential {B : CommGroup} (d : B →g B) := Π(b:B), d (d b) = 1
|
||||
definition is_differential {B : AbGroup} (d : B →g B) := Π(b:B), d (d b) = 1
|
||||
|
||||
definition image_subgroup_of_diff {B : CommGroup} (d : B →g B) (H : is_differential d) : subgroup_rel (comm_kernel d) :=
|
||||
definition image_subgroup_of_diff {B : AbGroup} (d : B →g B) (H : is_differential d) : subgroup_rel (ab_kernel d) :=
|
||||
subgroup_rel_of_subgroup (image_subgroup d) (kernel_subgroup d)
|
||||
begin
|
||||
intro g p,
|
||||
intro g p,
|
||||
induction p with f, induction f with h p,
|
||||
rewrite [p⁻¹],
|
||||
rewrite [p⁻¹],
|
||||
esimp,
|
||||
exact H h
|
||||
exact H h
|
||||
end
|
||||
|
||||
definition homology {B : CommGroup} (d : B →g B) (H : is_differential d) : CommGroup :=
|
||||
@quotient_comm_group (comm_kernel d) (image_subgroup_of_diff d H)
|
||||
definition homology {B : AbGroup} (d : B →g B) (H : is_differential d) : AbGroup :=
|
||||
@quotient_ab_group (ab_kernel d) (image_subgroup_of_diff d H)
|
||||
|
||||
structure exact_couple (A B : CommGroup) : Type :=
|
||||
structure exact_couple (A B : AbGroup) : Type :=
|
||||
( i : A →g A) (j : A →g B) (k : B →g A)
|
||||
( exact_ij : is_exact i j)
|
||||
( exact_jk : is_exact j k)
|
||||
( exact_ki : is_exact k i)
|
||||
|
||||
definition differential {A B : CommGroup} (EC : exact_couple A B) : B →g B :=
|
||||
definition differential {A B : AbGroup} (EC : exact_couple A B) : B →g B :=
|
||||
(exact_couple.j EC) ∘g (exact_couple.k EC)
|
||||
|
||||
definition differential_is_differential {A B : CommGroup} (EC : exact_couple A B) : is_differential (differential EC) :=
|
||||
definition differential_is_differential {A B : AbGroup} (EC : exact_couple A B) : is_differential (differential EC) :=
|
||||
begin
|
||||
induction EC,
|
||||
induction exact_jk,
|
||||
induction EC,
|
||||
induction exact_jk,
|
||||
intro b,
|
||||
exact (ap (group_fun j) (im_in_ker (group_fun k b))) ⬝ (respect_one j)
|
||||
end
|
||||
|
||||
section derived_couple
|
||||
|
||||
variables {A B : CommGroup} (EC : exact_couple A B)
|
||||
variables {A B : AbGroup} (EC : exact_couple A B)
|
||||
|
||||
definition derived_couple_A : CommGroup :=
|
||||
comm_subgroup (image_subgroup (exact_couple.i EC))
|
||||
definition derived_couple_A : AbGroup :=
|
||||
ab_subgroup (image_subgroup (exact_couple.i EC))
|
||||
|
||||
definition derived_couple_B : CommGroup :=
|
||||
definition derived_couple_B : AbGroup :=
|
||||
homology (differential EC) (differential_is_differential EC)
|
||||
|
||||
definition derived_couple_i : derived_couple_A EC →g derived_couple_A EC :=
|
||||
|
|
|
@ -12,12 +12,12 @@ open eq algebra is_trunc set_quotient relation sigma sigma.ops prod sum list tru
|
|||
|
||||
namespace group
|
||||
|
||||
variables {G G' : Group} {g g' h h' k : G} {A B : CommGroup}
|
||||
variables {G G' : Group} {g g' h h' k : G} {A B : AbGroup}
|
||||
|
||||
variables (X : Set) {l l' : list (X ⊎ X)}
|
||||
|
||||
/- Free Commutative Group of a set -/
|
||||
namespace free_comm_group
|
||||
/- Free Abelian Group of a set -/
|
||||
namespace free_ab_group
|
||||
|
||||
inductive fcg_rel : list (X ⊎ X) → list (X ⊎ X) → Type :=
|
||||
| rrefl : Πl, fcg_rel l l
|
||||
|
@ -133,22 +133,22 @@ namespace group
|
|||
rewrite [-append_concat], apply IH}
|
||||
end
|
||||
end
|
||||
end free_comm_group open free_comm_group
|
||||
end free_ab_group open free_ab_group
|
||||
|
||||
variables (X)
|
||||
definition group_free_comm_group [constructor] : comm_group (fcg_carrier X) :=
|
||||
comm_group.mk fcg_mul _ fcg_mul_assoc fcg_one fcg_one_mul fcg_mul_one
|
||||
definition group_free_ab_group [constructor] : ab_group (fcg_carrier X) :=
|
||||
ab_group.mk fcg_mul _ fcg_mul_assoc fcg_one fcg_one_mul fcg_mul_one
|
||||
fcg_inv fcg_mul_left_inv fcg_mul_comm
|
||||
|
||||
definition free_comm_group [constructor] : CommGroup :=
|
||||
CommGroup.mk _ (group_free_comm_group X)
|
||||
definition free_ab_group [constructor] : AbGroup :=
|
||||
AbGroup.mk _ (group_free_ab_group X)
|
||||
|
||||
/- The universal property of the free commutative group -/
|
||||
variables {X A}
|
||||
definition free_comm_group_inclusion [constructor] (x : X) : free_comm_group X :=
|
||||
definition free_ab_group_inclusion [constructor] (x : X) : free_ab_group X :=
|
||||
class_of [inl x]
|
||||
|
||||
theorem fgh_helper_respect_comm_rel (f : X → A) (r : fcg_rel X l l')
|
||||
theorem fgh_helper_respect_fcg_rel (f : X → A) (r : fcg_rel X l l')
|
||||
: Π(g : A), foldl (fgh_helper f) g l = foldl (fgh_helper f) g l' :=
|
||||
begin
|
||||
induction r with l x x x y l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂: intro g,
|
||||
|
@ -160,34 +160,41 @@ namespace group
|
|||
{ exact !IH₁ ⬝ !IH₂}
|
||||
end
|
||||
|
||||
definition free_comm_group_elim [constructor] (f : X → A) : free_comm_group X →g A :=
|
||||
definition free_ab_group_elim [constructor] (f : X → A) : free_ab_group X →g A :=
|
||||
begin
|
||||
fapply homomorphism.mk,
|
||||
{ intro g, refine set_quotient.elim _ _ g,
|
||||
{ intro l, exact foldl (fgh_helper f) 1 l},
|
||||
{ intro l l' r, esimp at *, refine trunc.rec _ r, clear r, intro r,
|
||||
exact fgh_helper_respect_comm_rel f r 1}},
|
||||
exact fgh_helper_respect_fcg_rel f r 1}},
|
||||
{ refine set_quotient.rec_prop _, intro l, refine set_quotient.rec_prop _, intro l',
|
||||
esimp, refine !foldl_append ⬝ _, esimp, apply fgh_helper_mul}
|
||||
end
|
||||
|
||||
definition fn_of_free_comm_group_elim [unfold_full] (φ : free_comm_group X →g A) : X → A :=
|
||||
φ ∘ free_comm_group_inclusion
|
||||
definition fn_of_free_ab_group_elim [unfold_full] (φ : free_ab_group X →g A) : X → A :=
|
||||
φ ∘ free_ab_group_inclusion
|
||||
|
||||
definition free_ab_group_elim_unique [constructor] (f : X → A) (k : free_ab_group X →g A)
|
||||
(H : k ∘ free_ab_group_inclusion ~ f) : k ~ free_ab_group_elim f :=
|
||||
begin
|
||||
refine set_quotient.rec_prop _, intro l, esimp,
|
||||
induction l with s l IH,
|
||||
{ esimp [foldl], exact to_respect_one k},
|
||||
{ rewrite [foldl_cons, fgh_helper_mul],
|
||||
refine to_respect_mul k (class_of [s]) (class_of l) ⬝ _,
|
||||
rewrite [IH], apply ap (λx, x * _), induction s: rewrite [▸*, one_mul, -H a],
|
||||
apply to_respect_inv }
|
||||
end
|
||||
|
||||
variables (X A)
|
||||
definition free_comm_group_elim_equiv_fn : (free_comm_group X →g A) ≃ (X → A) :=
|
||||
definition free_ab_group_elim_equiv_fn [constructor] : (free_ab_group X →g A) ≃ (X → A) :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ exact fn_of_free_comm_group_elim},
|
||||
{ exact free_comm_group_elim},
|
||||
{ exact fn_of_free_ab_group_elim},
|
||||
{ exact free_ab_group_elim},
|
||||
{ intro f, apply eq_of_homotopy, intro x, esimp, unfold [foldl], apply one_mul},
|
||||
{ intro φ, apply homomorphism_eq, refine set_quotient.rec_prop _, intro l, esimp,
|
||||
induction l with s l IH,
|
||||
{ esimp [foldl], symmetry, exact to_respect_one φ},
|
||||
{ rewrite [foldl_cons, fgh_helper_mul],
|
||||
refine _ ⬝ (to_respect_mul φ (class_of [s]) (class_of l))⁻¹,
|
||||
rewrite [▸*,IH], induction s: rewrite [▸*, one_mul], apply ap (λx, x * _),
|
||||
exact !to_respect_inv⁻¹}}
|
||||
{ intro k, symmetry, apply homomorphism_eq, apply free_ab_group_elim_unique,
|
||||
reflexivity }
|
||||
end
|
||||
|
||||
end group
|
||||
|
|
|
@ -12,7 +12,7 @@ open eq algebra is_trunc set_quotient relation sigma sigma.ops prod sum list tru
|
|||
|
||||
namespace group
|
||||
|
||||
variables {G G' : Group} {g g' h h' k : G} {A B : CommGroup}
|
||||
variables {G G' : Group} {g g' h h' k : G} {A B : AbGroup}
|
||||
|
||||
/- Free Group of a set -/
|
||||
variables (X : Set) {l l' : list (X ⊎ X)}
|
||||
|
|
|
@ -11,29 +11,29 @@ import .free_commutative_group
|
|||
open eq algebra is_trunc sigma sigma.ops prod trunc function equiv
|
||||
namespace group
|
||||
|
||||
variables {G G' : Group} {g g' h h' k : G} {A B : CommGroup}
|
||||
variables {G G' : Group} {g g' h h' k : G} {A B : AbGroup}
|
||||
|
||||
/- Tensor group (WIP) -/
|
||||
|
||||
/- namespace tensor_group
|
||||
variables {A B}
|
||||
local abbreviation ι := @free_comm_group_inclusion
|
||||
local abbreviation ι := @free_ab_group_inclusion
|
||||
|
||||
inductive tensor_rel_type : free_comm_group (Set_of_Group A ×t Set_of_Group B) → Type :=
|
||||
inductive tensor_rel_type : free_ab_group (Set_of_Group A ×t Set_of_Group B) → Type :=
|
||||
| mul_left : Π(a₁ a₂ : A) (b : B), tensor_rel_type (ι (a₁, b) * ι (a₂, b) * (ι (a₁ * a₂, b))⁻¹)
|
||||
| mul_right : Π(a : A) (b₁ b₂ : B), tensor_rel_type (ι (a, b₁) * ι (a, b₂) * (ι (a, b₁ * b₂))⁻¹)
|
||||
|
||||
open tensor_rel_type
|
||||
|
||||
definition tensor_rel' (x : free_comm_group (Set_of_Group A ×t Set_of_Group B)) : Prop :=
|
||||
definition tensor_rel' (x : free_ab_group (Set_of_Group A ×t Set_of_Group B)) : Prop :=
|
||||
∥ tensor_rel_type x ∥
|
||||
|
||||
definition tensor_group_rel (A B : CommGroup)
|
||||
: normal_subgroup_rel (free_comm_group (Set_of_Group A ×t Set_of_Group B)) :=
|
||||
definition tensor_group_rel (A B : AbGroup)
|
||||
: normal_subgroup_rel (free_ab_group (Set_of_Group A ×t Set_of_Group B)) :=
|
||||
sorry /- relation generated by tensor_rel'-/
|
||||
|
||||
definition tensor_group [constructor] : CommGroup :=
|
||||
quotient_comm_group (tensor_group_rel A B)
|
||||
definition tensor_group [constructor] : AbGroup :=
|
||||
quotient_ab_group (tensor_group_rel A B)
|
||||
|
||||
end tensor_group-/
|
||||
|
||||
|
|
|
@ -17,7 +17,7 @@ infixl ` • `:73 := has_scalar.smul
|
|||
|
||||
/- modules over a ring -/
|
||||
|
||||
structure left_module (R M : Type) [ringR : ring R] extends has_scalar R M, comm_group M renaming
|
||||
structure left_module (R M : Type) [ringR : ring R] extends has_scalar R M, ab_group M renaming
|
||||
mul→add mul_assoc→add_assoc one→zero one_mul→zero_add mul_one→add_zero inv→neg
|
||||
mul_left_inv→add_left_inv mul_comm→add_comm :=
|
||||
(smul_left_distrib : Π (r : R) (x y : M), smul r (add x y) = (add (smul r x) (smul r y)))
|
||||
|
@ -26,12 +26,12 @@ structure left_module (R M : Type) [ringR : ring R] extends has_scalar R M, comm
|
|||
(one_smul : Π x, smul one x = x)
|
||||
|
||||
/- we make it a class now (and not as part of the structure) to avoid
|
||||
left_module.to_comm_group to be an instance -/
|
||||
left_module.to_ab_group to be an instance -/
|
||||
attribute left_module [class]
|
||||
|
||||
definition add_comm_group_of_left_module [reducible] [trans_instance] (R M : Type) [K : ring R]
|
||||
[H : left_module R M] : add_comm_group M :=
|
||||
@left_module.to_comm_group R M K H
|
||||
definition add_ab_group_of_left_module [reducible] [trans_instance] (R M : Type) [K : ring R]
|
||||
[H : left_module R M] : add_ab_group M :=
|
||||
@left_module.to_ab_group R M K H
|
||||
|
||||
definition has_scalar_of_left_module [reducible] [trans_instance] (R M : Type) [K : ring R]
|
||||
[H : left_module R M] : has_scalar R M :=
|
||||
|
|
|
@ -13,7 +13,7 @@ open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum
|
|||
namespace group
|
||||
|
||||
variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}
|
||||
{A B : CommGroup}
|
||||
{A B : AbGroup}
|
||||
|
||||
/- Binary products (direct product) of Groups -/
|
||||
definition product_one [constructor] : G × G' := (one, one)
|
||||
|
@ -39,7 +39,7 @@ namespace group
|
|||
theorem product_mul_left_inv (g : G × G') : g⁻¹ * g = 1 :=
|
||||
prod_eq !mul.left_inv !mul.left_inv
|
||||
|
||||
theorem product_mul_comm {G G' : CommGroup} (g h : G × G') : g * h = h * g :=
|
||||
theorem product_mul_comm {G G' : AbGroup} (g h : G × G') : g * h = h * g :=
|
||||
prod_eq !mul.comm !mul.comm
|
||||
|
||||
end
|
||||
|
@ -52,11 +52,11 @@ namespace group
|
|||
definition product [constructor] : Group :=
|
||||
Group.mk _ (group_prod G G')
|
||||
|
||||
definition comm_group_prod [constructor] (G G' : CommGroup) : comm_group (G × G') :=
|
||||
⦃comm_group, group_prod G G', mul_comm := product_mul_comm⦄
|
||||
definition ab_group_prod [constructor] (G G' : AbGroup) : ab_group (G × G') :=
|
||||
⦃ab_group, group_prod G G', mul_comm := product_mul_comm⦄
|
||||
|
||||
definition comm_product [constructor] (G G' : CommGroup) : CommGroup :=
|
||||
CommGroup.mk _ (comm_group_prod G G')
|
||||
definition ab_product [constructor] (G G' : AbGroup) : AbGroup :=
|
||||
AbGroup.mk _ (ab_group_prod G G')
|
||||
|
||||
infix ` ×g `:30 := group.product
|
||||
|
||||
|
|
|
@ -13,7 +13,7 @@ open eq algebra is_trunc set_quotient relation sigma sigma.ops prod trunc functi
|
|||
namespace group
|
||||
|
||||
variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}
|
||||
variables {A B : CommGroup}
|
||||
variables {A B : AbGroup}
|
||||
|
||||
/- Quotient Group -/
|
||||
|
||||
|
@ -37,7 +37,7 @@ namespace group
|
|||
have H2 : (g * h⁻¹) * (h * k⁻¹) = g * k⁻¹, from calc
|
||||
(g * h⁻¹) * (h * k⁻¹) = ((g * h⁻¹) * h) * k⁻¹ : by rewrite [mul.assoc (g * h⁻¹)]
|
||||
... = g * k⁻¹ : by rewrite inv_mul_cancel_right,
|
||||
show N (g * k⁻¹), from H2 ▸ H1
|
||||
show N (g * k⁻¹), by rewrite [-H2]; exact H1
|
||||
|
||||
theorem is_equivalence_quotient_rel : is_equivalence (quotient_rel N) :=
|
||||
is_equivalence.mk quotient_rel_refl
|
||||
|
@ -53,7 +53,7 @@ namespace group
|
|||
g⁻¹ * (h * g⁻¹) * g = g⁻¹ * h * g⁻¹ * g : by rewrite -mul.assoc
|
||||
... = g⁻¹ * h : inv_mul_cancel_right
|
||||
... = g⁻¹ * h⁻¹⁻¹ : by rewrite algebra.inv_inv,
|
||||
show N (g⁻¹ * h⁻¹⁻¹), from H2 ▸ H1
|
||||
show N (g⁻¹ * h⁻¹⁻¹), by rewrite [-H2]; exact H1
|
||||
|
||||
theorem quotient_rel_resp_mul (r : quotient_rel N g h) (r' : quotient_rel N g' h')
|
||||
: quotient_rel N (g * g') (h * h') :=
|
||||
|
@ -113,7 +113,7 @@ namespace group
|
|||
exact ap class_of !mul.left_inv
|
||||
end
|
||||
|
||||
theorem quotient_mul_comm {G : CommGroup} {N : normal_subgroup_rel G} (g h : qg N)
|
||||
theorem quotient_mul_comm {G : AbGroup} {N : normal_subgroup_rel G} (g h : qg N)
|
||||
: g * h = h * g :=
|
||||
begin
|
||||
refine set_quotient.rec_prop _ g, clear g, intro g,
|
||||
|
@ -131,18 +131,18 @@ namespace group
|
|||
definition quotient_group [constructor] : Group :=
|
||||
Group.mk _ (group_qg N)
|
||||
|
||||
definition comm_group_qg [constructor] {G : CommGroup} (N : normal_subgroup_rel G)
|
||||
: comm_group (qg N) :=
|
||||
⦃comm_group, group_qg N, mul_comm := quotient_mul_comm⦄
|
||||
definition ab_group_qg [constructor] {G : AbGroup} (N : normal_subgroup_rel G)
|
||||
: ab_group (qg N) :=
|
||||
⦃ab_group, group_qg N, mul_comm := quotient_mul_comm⦄
|
||||
|
||||
definition quotient_comm_group [constructor] {G : CommGroup} (N : subgroup_rel G)
|
||||
: CommGroup :=
|
||||
CommGroup.mk _ (comm_group_qg (normal_subgroup_rel_comm N))
|
||||
definition quotient_ab_group [constructor] {G : AbGroup} (N : subgroup_rel G)
|
||||
: AbGroup :=
|
||||
AbGroup.mk _ (ab_group_qg (normal_subgroup_rel_ab N))
|
||||
|
||||
definition qg_map [constructor] : G →g quotient_group N :=
|
||||
homomorphism.mk class_of (λ g h, idp)
|
||||
|
||||
definition comm_gq_map {G : CommGroup} (N : subgroup_rel G) : G →g quotient_comm_group N :=
|
||||
definition ab_gq_map {G : AbGroup} (N : subgroup_rel G) : G →g quotient_ab_group N :=
|
||||
begin
|
||||
fapply homomorphism.mk,
|
||||
exact class_of,
|
||||
|
@ -166,7 +166,7 @@ namespace group
|
|||
unfold quotient_rel, rewrite e, exact H
|
||||
end
|
||||
|
||||
definition comm_gq_map_eq_one {K : subgroup_rel A} (g :A) (H : K g) : comm_gq_map K g = 1 :=
|
||||
definition ab_gq_map_eq_one {K : subgroup_rel A} (g :A) (H : K g) : ab_gq_map K g = 1 :=
|
||||
begin
|
||||
apply eq_of_rel,
|
||||
have e : (g * 1⁻¹ = g),
|
||||
|
@ -187,26 +187,33 @@ namespace group
|
|||
apply rel_of_eq _ H
|
||||
end
|
||||
|
||||
definition quotient_group_elim (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) : quotient_group N →g G' :=
|
||||
definition quotient_group_elim_fun [unfold 6] (f : G →g G') (H : Π⦃g⦄, N g → f g = 1)
|
||||
(g : quotient_group N) : G' :=
|
||||
begin
|
||||
refine set_quotient.elim f _ g,
|
||||
intro g h K,
|
||||
apply eq_of_mul_inv_eq_one,
|
||||
have e : f (g * h⁻¹) = f g * (f h)⁻¹,
|
||||
from calc
|
||||
f (g * h⁻¹) = f g * (f h⁻¹) : to_respect_mul
|
||||
... = f g * (f h)⁻¹ : to_respect_inv,
|
||||
rewrite (inverse e),
|
||||
apply H, exact K
|
||||
end
|
||||
|
||||
definition quotient_group_elim [constructor] (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) : quotient_group N →g G' :=
|
||||
begin
|
||||
fapply homomorphism.mk,
|
||||
-- define function
|
||||
{ apply set_quotient.elim f,
|
||||
intro g h K,
|
||||
apply eq_of_mul_inv_eq_one,
|
||||
have e : f (g * h⁻¹) = f g * (f h)⁻¹,
|
||||
from calc
|
||||
f (g * h⁻¹) = f g * (f h⁻¹) : to_respect_mul
|
||||
... = f g * (f h)⁻¹ : to_respect_inv,
|
||||
rewrite (inverse e),
|
||||
apply H, exact K},
|
||||
{ exact quotient_group_elim_fun f H },
|
||||
{ intro g h, induction g using set_quotient.rec_prop with g,
|
||||
induction h using set_quotient.rec_prop with h,
|
||||
krewrite (inverse (to_respect_mul (qg_map N) g h)),
|
||||
unfold qg_map, esimp, exact to_respect_mul f g h }
|
||||
end
|
||||
|
||||
definition quotient_group_compute (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) : quotient_group_elim f H ∘g qg_map N ~ f :=
|
||||
definition quotient_group_compute (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) :
|
||||
quotient_group_elim f H ∘g qg_map N ~ f :=
|
||||
begin
|
||||
intro g, reflexivity
|
||||
end
|
||||
|
@ -215,7 +222,6 @@ namespace group
|
|||
: ( k ∘g qg_map N ~ f ) → k ~ quotient_group_elim f H :=
|
||||
begin
|
||||
intro K cg, induction cg using set_quotient.rec_prop with g,
|
||||
krewrite (quotient_group_compute f),
|
||||
exact K g
|
||||
end
|
||||
|
||||
|
@ -231,17 +237,17 @@ namespace group
|
|||
{fapply is_prop.elimo} }
|
||||
end
|
||||
|
||||
definition comm_group_quotient_homomorphism (A B : CommGroup)(K : subgroup_rel A)(L : subgroup_rel B) (f : A →g B)
|
||||
(p : Π(a:A), K(a) → L(f a)) : quotient_comm_group K →g quotient_comm_group L :=
|
||||
definition ab_group_quotient_homomorphism (A B : AbGroup)(K : subgroup_rel A)(L : subgroup_rel B) (f : A →g B)
|
||||
(p : Π(a:A), K(a) → L(f a)) : quotient_ab_group K →g quotient_ab_group L :=
|
||||
begin
|
||||
fapply quotient_group_elim,
|
||||
exact (comm_gq_map L) ∘g f,
|
||||
exact (ab_gq_map L) ∘g f,
|
||||
intro a,
|
||||
intro k,
|
||||
exact @comm_gq_map_eq_one B L (f a) (p a k),
|
||||
exact @ab_gq_map_eq_one B L (f a) (p a k),
|
||||
end
|
||||
|
||||
definition comm_group_first_iso_thm (A B : CommGroup) (f : A →g B) : quotient_comm_group (kernel_subgroup f) ≃g comm_image f :=
|
||||
definition ab_group_first_iso_thm (A B : AbGroup) (f : A →g B) : quotient_ab_group (kernel_subgroup f) ≃g ab_image f :=
|
||||
begin
|
||||
fapply isomorphism.mk,
|
||||
fapply quotient_group_elim,
|
||||
|
@ -254,12 +260,60 @@ definition comm_group_first_iso_thm (A B : CommGroup) (f : A →g B) : quotient_
|
|||
-- show that the above map is injective and surjective.
|
||||
end
|
||||
|
||||
definition ab_group_kernel_factor {A B C: AbGroup} (f : A →g B)(g : A →g C){i : C →g B}(H : f = i ∘g g )
|
||||
: Π a:A , kernel_subgroup(g)(a) → kernel_subgroup(f)(a) :=
|
||||
begin
|
||||
intro a,
|
||||
intro p,
|
||||
exact calc
|
||||
f a = i (g a) : homotopy_of_eq (ap group_fun H) a
|
||||
... = i 1 : ap i p
|
||||
... = 1 : respect_one i
|
||||
end
|
||||
|
||||
definition ab_group_kernel_equivalent {A B : AbGroup} (C : AbGroup) (f : A →g B)(g : A →g C)(i : C →g B)(H : f = i ∘g g )(K : is_embedding i)
|
||||
: Π a:A , kernel_subgroup(g)(a) ↔ kernel_subgroup(f)(a) :=
|
||||
begin
|
||||
intro a,
|
||||
fapply iff.intro,
|
||||
exact ab_group_kernel_factor f g H a,
|
||||
intro p,
|
||||
apply @is_injective_of_is_embedding _ _ i _ (g a) 1,
|
||||
exact calc
|
||||
i (g a) = f a : (homotopy_of_eq (ap group_fun H) a)⁻¹
|
||||
... = 1 : p
|
||||
... = i 1 : (respect_one i)⁻¹
|
||||
end
|
||||
|
||||
definition ab_group_kernel_image_lift (A B : AbGroup) (f : A →g B)
|
||||
: Π a : A, kernel_subgroup(image_lift(f))(a) ↔ kernel_subgroup(f)(a) :=
|
||||
begin
|
||||
fapply ab_group_kernel_equivalent (ab_image f) (f) (image_lift(f)) (image_incl(f)),
|
||||
exact image_factor f,
|
||||
exact is_embedding_of_is_injective (image_incl_injective(f)),
|
||||
end
|
||||
|
||||
definition ab_group_kernel_quotient_to_image {A B : AbGroup} (f : A →g B)
|
||||
: quotient_ab_group (kernel_subgroup f) →g ab_image (f) :=
|
||||
begin
|
||||
fapply quotient_group_elim (image_lift f), intro a, intro p,
|
||||
apply iff.mpr (ab_group_kernel_image_lift _ _ f a) p
|
||||
end
|
||||
|
||||
definition is_surjective_kernel_quotient_to_image {A B : AbGroup} (f : A →g B)
|
||||
: is_surjective (ab_group_kernel_quotient_to_image f) :=
|
||||
begin
|
||||
intro b, exact sorry
|
||||
-- have H : is_surjective (image_lift f)
|
||||
end
|
||||
|
||||
print iff.mpr
|
||||
/- set generating normal subgroup -/
|
||||
|
||||
section
|
||||
|
||||
parameters {A₁ : CommGroup} (S : A₁ → Prop)
|
||||
variable {A₂ : CommGroup}
|
||||
parameters {A₁ : AbGroup} (S : A₁ → Prop)
|
||||
variable {A₂ : AbGroup}
|
||||
|
||||
inductive generating_relation' : A₁ → Type :=
|
||||
| rincl : Π{g}, S g → generating_relation' g
|
||||
|
@ -283,17 +337,17 @@ definition comm_group_first_iso_thm (A B : CommGroup) (f : A →g B) : quotient_
|
|||
Rmul := gr_mul⦄
|
||||
|
||||
parameter (A₁)
|
||||
definition quotient_comm_group_gen : CommGroup := quotient_comm_group normal_generating_relation
|
||||
definition quotient_ab_group_gen : AbGroup := quotient_ab_group normal_generating_relation
|
||||
|
||||
definition gqg_map [constructor] : A₁ →g quotient_comm_group_gen :=
|
||||
definition gqg_map [constructor] : A₁ →g quotient_ab_group_gen :=
|
||||
qg_map _
|
||||
|
||||
parameter {A₁}
|
||||
definition gqg_eq_of_rel {g h : A₁} (H : S (g * h⁻¹)) : gqg_map g = gqg_map h :=
|
||||
eq_of_rel (tr (rincl H))
|
||||
|
||||
definition gqg_elim (f : A₁ →g A₂) (H : Π⦃g⦄, S g → f g = 1)
|
||||
: quotient_comm_group_gen →g A₂ :=
|
||||
definition gqg_elim [constructor] (f : A₁ →g A₂) (H : Π⦃g⦄, S g → f g = 1)
|
||||
: quotient_ab_group_gen →g A₂ :=
|
||||
begin
|
||||
apply quotient_group_elim f,
|
||||
intro g r, induction r with r,
|
||||
|
@ -311,7 +365,7 @@ definition comm_group_first_iso_thm (A B : CommGroup) (f : A →g B) : quotient_
|
|||
end
|
||||
|
||||
definition gqg_elim_unique (f : A₁ →g A₂) (H : Π⦃g⦄, S g → f g = 1)
|
||||
(k : quotient_comm_group_gen →g A₂) : ( k ∘g gqg_map ~ f ) → k ~ gqg_elim f H :=
|
||||
(k : quotient_ab_group_gen →g A₂) : ( k ∘g gqg_map ~ f ) → k ~ gqg_elim f H :=
|
||||
!gelim_unique
|
||||
|
||||
end
|
||||
|
|
|
@ -130,12 +130,12 @@ namespace group
|
|||
abbreviation is_normal_subgroup [unfold 2] := @normal_subgroup_rel.is_normal_subgroup
|
||||
|
||||
variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}
|
||||
{A B : CommGroup}
|
||||
{A B : AbGroup}
|
||||
|
||||
theorem is_normal_subgroup' (h : G) (r : N g) : N (h⁻¹ * g * h) :=
|
||||
inv_inv h ▸ is_normal_subgroup N h⁻¹ r
|
||||
|
||||
definition normal_subgroup_rel_comm.{u} [constructor] (R : subgroup_rel.{_ u} A)
|
||||
definition normal_subgroup_rel_ab.{u} [constructor] (R : subgroup_rel.{_ u} A)
|
||||
: normal_subgroup_rel.{_ u} A :=
|
||||
⦃normal_subgroup_rel, R,
|
||||
is_normal_subgroup := abstract begin
|
||||
|
@ -209,7 +209,7 @@ namespace group
|
|||
theorem subgroup_mul_left_inv (g : sg H) : g⁻¹ * g = 1 :=
|
||||
subtype_eq !mul.left_inv
|
||||
|
||||
theorem subgroup_mul_comm {G : CommGroup} {H : subgroup_rel G} (g h : sg H)
|
||||
theorem subgroup_mul_comm {G : AbGroup} {H : subgroup_rel G} (g h : sg H)
|
||||
: g * h = h * g :=
|
||||
subtype_eq !mul.comm
|
||||
|
||||
|
@ -223,17 +223,17 @@ namespace group
|
|||
definition subgroup [constructor] : Group :=
|
||||
Group.mk _ (group_sg H)
|
||||
|
||||
definition comm_group_sg [constructor] {G : CommGroup} (H : subgroup_rel G)
|
||||
: comm_group (sg H) :=
|
||||
⦃comm_group, group_sg H, mul_comm := subgroup_mul_comm⦄
|
||||
definition ab_group_sg [constructor] {G : AbGroup} (H : subgroup_rel G)
|
||||
: ab_group (sg H) :=
|
||||
⦃ab_group, group_sg H, mul_comm := subgroup_mul_comm⦄
|
||||
|
||||
definition comm_subgroup [constructor] {G : CommGroup} (H : subgroup_rel G)
|
||||
: CommGroup :=
|
||||
CommGroup.mk _ (comm_group_sg H)
|
||||
definition ab_subgroup [constructor] {G : AbGroup} (H : subgroup_rel G)
|
||||
: AbGroup :=
|
||||
AbGroup.mk _ (ab_group_sg H)
|
||||
|
||||
definition kernel {G H : Group} (f : G →g H) : Group := subgroup (kernel_subgroup f)
|
||||
|
||||
definition comm_kernel {G H : CommGroup} (f : G →g H) : CommGroup := comm_subgroup (kernel_subgroup f)
|
||||
definition ab_kernel {G H : AbGroup} (f : G →g H) : AbGroup := ab_subgroup (kernel_subgroup f)
|
||||
|
||||
definition incl_of_subgroup [constructor] {G : Group} (H : subgroup_rel G) : subgroup H →g G :=
|
||||
begin
|
||||
|
@ -258,24 +258,24 @@ namespace group
|
|||
definition image {G H : Group} (f : G →g H) : Group :=
|
||||
subgroup (image_subgroup f)
|
||||
|
||||
definition CommGroup_of_Group.{u} (G : Group.{u}) (H : Π (g h : G), mul g h = mul h g) : CommGroup.{u} :=
|
||||
definition AbGroup_of_Group.{u} (G : Group.{u}) (H : Π (g h : G), mul g h = mul h g) : AbGroup.{u} :=
|
||||
begin
|
||||
induction G,
|
||||
induction struct,
|
||||
fapply CommGroup.mk,
|
||||
fapply AbGroup.mk,
|
||||
exact carrier,
|
||||
fapply comm_group.mk,
|
||||
repeat assumption,
|
||||
fapply ab_group.mk,
|
||||
repeat assumption,
|
||||
exact H
|
||||
end
|
||||
|
||||
definition comm_image {G : CommGroup} {H : Group} (f : G →g H) : CommGroup :=
|
||||
CommGroup_of_Group (image f)
|
||||
definition ab_image {G : AbGroup} {H : Group} (f : G →g H) : AbGroup :=
|
||||
AbGroup_of_Group (image f)
|
||||
begin
|
||||
intro g h,
|
||||
induction g with x t, induction h with y s,
|
||||
fapply subtype_eq,
|
||||
induction t with p, induction s with q, induction p with g p, induction q with h q, induction p, induction q,
|
||||
induction t with p, induction s with q, induction p with g p, induction q with h q, induction p, induction q,
|
||||
refine (((respect_mul f g h)⁻¹ ⬝ _) ⬝ (respect_mul f h g)),
|
||||
apply (ap f),
|
||||
induction G, induction struct, apply mul_comm
|
||||
|
@ -299,9 +299,9 @@ namespace group
|
|||
definition image_lift {G H : Group} (f : G →g H) : G →g image f :=
|
||||
begin
|
||||
fapply hom_lift f,
|
||||
intro g,
|
||||
intro g,
|
||||
apply tr,
|
||||
fapply fiber.mk,
|
||||
fapply fiber.mk,
|
||||
exact g, reflexivity
|
||||
end
|
||||
|
||||
|
@ -317,7 +317,7 @@ namespace group
|
|||
intro p,
|
||||
fapply subtype_eq,
|
||||
exact p
|
||||
end
|
||||
end
|
||||
|
||||
definition image_incl_eq_one {G H : Group} (f : G →g H) : Π (x : image f), (image_incl f x = 1) → x = 1 :=
|
||||
begin
|
||||
|
|
|
@ -389,7 +389,7 @@ namespace seq_colim
|
|||
rewrite [▸*, +ap_con, ap_inv, +succ_add_tr_rep_succ, con_inv, inv_con_inv_right, +con.assoc],
|
||||
apply whisker_left,
|
||||
rewrite [- +con.assoc], apply whisker_right, rewrite [- +ap_compose'],
|
||||
note s := (eq_top_of_square (natural_square
|
||||
note s := (eq_top_of_square (natural_square_tr
|
||||
(λx, fn_tr_eq_tr_fn (succ_add n k) f x ⬝ (tr_ap A succ (succ_add n k) (f x))⁻¹) p))⁻¹,
|
||||
rewrite [inv_con_inv_right at s, -con.assoc at s], exact s
|
||||
end
|
||||
|
|
|
@ -1,279 +0,0 @@
|
|||
/-
|
||||
Copyright (c) 2016 Floris van Doorn. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Authors: Floris van Doorn
|
||||
|
||||
Eilenberg MacLane spaces
|
||||
-/
|
||||
|
||||
import homotopy.EM .spectrum
|
||||
|
||||
open eq is_equiv equiv is_conn is_trunc unit function pointed nat group algebra trunc trunc_index
|
||||
fiber prod pointed susp EM.ops
|
||||
|
||||
namespace EM
|
||||
|
||||
/- Functorial action of Eilenberg-Maclane spaces -/
|
||||
|
||||
definition pEM1_functor [constructor] {G H : Group} (φ : G →g H) : pEM1 G →* pEM1 H :=
|
||||
begin
|
||||
fconstructor,
|
||||
{ intro g, induction g,
|
||||
{ exact base },
|
||||
{ exact pth (φ g) },
|
||||
{ exact ap pth (respect_mul φ g h) ⬝ resp_mul (φ g) (φ h) }},
|
||||
{ reflexivity }
|
||||
end
|
||||
|
||||
definition EMadd1_functor [constructor] {G H : CommGroup} (φ : G →g H) (n : ℕ) :
|
||||
EMadd1 G n →* EMadd1 H n :=
|
||||
begin
|
||||
apply ptrunc_functor,
|
||||
apply iterate_psusp_functor,
|
||||
apply pEM1_functor,
|
||||
exact φ
|
||||
end
|
||||
|
||||
definition EM_functor [unfold 4] {G H : CommGroup} (φ : G →g H) (n : ℕ) :
|
||||
K G n →* K H n :=
|
||||
begin
|
||||
cases n with n,
|
||||
{ exact pmap_of_homomorphism φ },
|
||||
{ exact EMadd1_functor φ n }
|
||||
end
|
||||
|
||||
-- TODO: (K G n →* K H n) ≃ (G →g H)
|
||||
|
||||
/- Equivalence of Groups and pointed connected 1-truncated types -/
|
||||
|
||||
definition pEM1_pequiv_ptruncconntype (X : 1-Type*[0]) : pEM1 (π₁ X) ≃* X :=
|
||||
pEM1_pequiv_type
|
||||
|
||||
definition Group_equiv_ptruncconntype [constructor] : Group ≃ 1-Type*[0] :=
|
||||
equiv.MK (λG, ptruncconntype.mk (pEM1 G) _ pt !is_conn_pEM1)
|
||||
(λX, π₁ X)
|
||||
begin intro X, apply ptruncconntype_eq, esimp, exact pEM1_pequiv_type end
|
||||
begin intro G, apply eq_of_isomorphism, apply fundamental_group_pEM1 end
|
||||
|
||||
/- Higher EM-spaces -/
|
||||
|
||||
/- K(G, 2) is unique (see below for general case) -/
|
||||
definition loopn_EMadd1 (G : CommGroup) (n : ℕ) : Ω[succ n] (EMadd1 G n) ≃* pType_of_Group G :=
|
||||
begin
|
||||
refine _ ⬝e* loop_pEM1 G,
|
||||
cases n with n,
|
||||
{ refine !loop_ptrunc_pequiv ⬝e* _, refine ptrunc_pequiv _ _ _,
|
||||
apply is_trunc_eq, apply is_trunc_EM1},
|
||||
induction n with n IH,
|
||||
{ exact loop_pequiv_loop (loop_EM2 G)},
|
||||
refine _ ⬝e* IH,
|
||||
refine !homotopy_group_pequiv_loop_ptrunc⁻¹ᵉ* ⬝e* _ ⬝e* !homotopy_group_pequiv_loop_ptrunc,
|
||||
apply iterate_psusp_stability_pequiv,
|
||||
rexact add_mul_le_mul_add n 1 1
|
||||
end
|
||||
|
||||
definition EM2_map [unfold 7] {G : CommGroup} {X : Type*} (e : Ω[2] X ≃ G)
|
||||
(r : Π(p q : Ω[2] X), e (@concat (Ω X) idp idp idp p q) = e p * e q)
|
||||
[is_conn 1 X] [is_trunc 2 X] : EMadd1 G 1 → X :=
|
||||
begin
|
||||
change trunc 2 (susp (EM1 G)) → X, intro x,
|
||||
induction x with x, induction x with x,
|
||||
{ exact pt},
|
||||
{ exact pt},
|
||||
{ change carrier (Ω X), refine EM1_map e r x}
|
||||
end
|
||||
|
||||
definition pEM2_pmap [constructor] {G : CommGroup} {X : Type*} (e : Ω[2] X ≃ G)
|
||||
(r : Π(p q : Ω[2] X), e (@concat (Ω X) idp idp idp p q) = e p * e q)
|
||||
[is_conn 1 X] [is_trunc 2 X] : EMadd1 G 1 →* X :=
|
||||
pmap.mk (EM2_map e r) idp
|
||||
|
||||
definition loop_pEM2_pmap {G : CommGroup} {X : Type*} (e : Ω[2] X ≃ G)
|
||||
(r : Π(p q : Ω[2] X), e (@concat (Ω X) idp idp idp p q) = e p * e q)
|
||||
[is_conn 1 X] [is_trunc 2 X] :
|
||||
Ω→[2](pEM2_pmap e r) ~ e⁻¹ᵉ ∘ loopn_EMadd1 G 1 :=
|
||||
begin
|
||||
exact sorry
|
||||
end
|
||||
|
||||
-- TODO: make arguments in trivial_homotopy_group_of_is_trunc implicit
|
||||
attribute is_conn_EMadd1 is_trunc_EMadd1 [instance]
|
||||
definition pEM2_pequiv' {G : CommGroup} {X : Type*} (e : Ω[2] X ≃ G)
|
||||
(r : Π(p q : Ω[2] X), e (@concat (Ω X) idp idp idp p q) = e p * e q)
|
||||
[is_conn 1 X] [is_trunc 2 X] : EMadd1 G 1 ≃* X :=
|
||||
begin
|
||||
apply pequiv_of_pmap (pEM2_pmap e r),
|
||||
have is_conn 0 (EMadd1 G 1), from !is_conn_of_is_conn_succ,
|
||||
have is_trunc 2 (EMadd1 G 1), from !is_trunc_EMadd1,
|
||||
refine whitehead_principle_pointed 2 _ _,
|
||||
intro k, apply @nat.lt_by_cases k 2: intro H,
|
||||
{ apply @is_equiv_of_is_contr,
|
||||
do 2 exact trivial_homotopy_group_of_is_conn _ (le_of_lt_succ H)},
|
||||
{ cases H, esimp, apply is_equiv_trunc_functor, esimp,
|
||||
apply is_equiv.homotopy_closed, rotate 1,
|
||||
{ symmetry, exact loop_pEM2_pmap _ _},
|
||||
apply is_equiv_compose, apply pequiv.to_is_equiv, apply to_is_equiv},
|
||||
{ apply @is_equiv_of_is_contr,
|
||||
exact trivial_homotopy_group_of_is_trunc _ H,
|
||||
apply @trivial_homotopy_group_of_is_trunc, rotate 1, exact H, exact _inst_2}
|
||||
end
|
||||
|
||||
definition pEM2_pequiv {G : CommGroup} {X : Type*} (e : πg[1+1] X ≃g G)
|
||||
[is_conn 1 X] [is_trunc 2 X] : EMadd1 G 1 ≃* X :=
|
||||
begin
|
||||
have is_set (Ω[2] X), from !is_trunc_eq,
|
||||
apply pEM2_pequiv' (!trunc_equiv⁻¹ᵉ ⬝e equiv_of_isomorphism e),
|
||||
intro p q, esimp, exact to_respect_mul e (tr p) (tr q)
|
||||
end
|
||||
|
||||
-- general case
|
||||
definition EMadd1_map [unfold 8] {G : CommGroup} {X : Type*} {n : ℕ} (e : Ω[succ n] X ≃ G)
|
||||
(r : Π(p q : Ω (Ω[n] X)), e (p ⬝ q) = e p * e q)
|
||||
[H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : EMadd1 G n → X :=
|
||||
begin
|
||||
revert X e r H1 H2, induction n with n f: intro X e r H1 H2,
|
||||
{ change trunc 1 (EM1 G) → X, intro x, induction x with x, exact EM1_map e r x},
|
||||
change trunc (n.+2) (susp (iterate_psusp n (pEM1 G))) → X, intro x,
|
||||
induction x with x, induction x with x,
|
||||
{ exact pt},
|
||||
{ exact pt},
|
||||
change carrier (Ω X), refine f _ _ _ _ _ (tr x),
|
||||
{ refine _⁻¹ᵉ ⬝e e, apply equiv_of_pequiv, apply loopn_succ_in},
|
||||
exact abstract begin
|
||||
intro p q, refine _ ⬝ !r, apply ap e, esimp,
|
||||
apply inv_eq_of_eq,
|
||||
refine _⁻¹ ⬝ !loopn_succ_in_con⁻¹,
|
||||
exact to_right_inv (loopn_succ_in X (succ n)) p ◾ to_right_inv (loopn_succ_in X (succ n)) q
|
||||
end end
|
||||
end
|
||||
|
||||
definition pEMadd1_pmap [constructor] {G : CommGroup} {X : Type*} {n : ℕ} (e : Ω[succ n] X ≃ G)
|
||||
(r : Π(p q : Ω[succ n] X), e (@concat (Ω[n] X) pt pt pt p q) = e p * e q)
|
||||
[H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : EMadd1 G n →* X :=
|
||||
pmap.mk (EMadd1_map e r) begin cases n with n: reflexivity end
|
||||
|
||||
definition loop_pEMadd1_pmap {G : CommGroup} {X : Type*} {n : ℕ} (e : Ω[succ n] X ≃ G)
|
||||
(r : Π(p q : Ω[succ n] X), e (@concat (Ω[n] X) pt pt pt p q) = e p * e q)
|
||||
[H1 : is_conn n X] [H2 : is_trunc (n.+1) X] :
|
||||
Ω→[succ n](pEMadd1_pmap e r) ~ e⁻¹ᵉ ∘ loopn_EMadd1 G n :=
|
||||
begin
|
||||
apply homotopy_of_inv_homotopy_pre (loopn_EMadd1 G n),
|
||||
intro g, esimp at *,
|
||||
revert X e r H1 H2, induction n with n IH: intro X e r H1 H2,
|
||||
{ refine !idp_con ⬝ _, refine !ap_compose'⁻¹ ⬝ _, apply elim_pth},
|
||||
{ replace (succ (succ n)) with ((succ n) + 1), rewrite [apn_succ],
|
||||
exact sorry}
|
||||
-- exact !idp_con ⬝ !elim_pth
|
||||
end
|
||||
|
||||
-- definition is_conn_of_le (n : ℕ₋₂) (A : Type) [is_conn (n.+1) A] :
|
||||
-- is_conn n A :=
|
||||
-- is_trunc_trunc_of_le A -2 (trunc_index.self_le_succ n)
|
||||
-- attribute is_conn_EMadd1 is_trunc_EMadd1 [instance]
|
||||
|
||||
definition pEMadd1_pequiv' {G : CommGroup} {X : Type*} {n : ℕ} (e : Ω[succ n] X ≃ G)
|
||||
(r : Π(p q : Ω[succ n] X), e (@concat (Ω[n] X) pt pt pt p q) = e p * e q)
|
||||
[H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : EMadd1 G n ≃* X :=
|
||||
begin
|
||||
apply pequiv_of_pmap (pEMadd1_pmap e r),
|
||||
have is_conn 0 (EMadd1 G n), from is_conn_of_le _ (zero_le_of_nat n),
|
||||
have is_trunc (n.+1) (EMadd1 G n), from !is_trunc_EMadd1,
|
||||
refine whitehead_principle_pointed (n.+1) _ _,
|
||||
intro k, apply @nat.lt_by_cases k (succ n): intro H,
|
||||
{ apply @is_equiv_of_is_contr,
|
||||
do 2 exact trivial_homotopy_group_of_is_conn _ (le_of_lt_succ H)},
|
||||
{ cases H, esimp, apply is_equiv_trunc_functor, esimp,
|
||||
apply is_equiv.homotopy_closed, rotate 1,
|
||||
{ symmetry, exact loop_pEMadd1_pmap _ _},
|
||||
apply is_equiv_compose, apply pequiv.to_is_equiv},
|
||||
{ apply @is_equiv_of_is_contr,
|
||||
do 2 exact trivial_homotopy_group_of_is_trunc _ H}
|
||||
end
|
||||
|
||||
definition pEMadd1_pequiv {G : CommGroup} {X : Type*} {n : ℕ} (e : πg[n+1] X ≃g G)
|
||||
[H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : EMadd1 G n ≃* X :=
|
||||
begin
|
||||
have is_set (Ω[succ n] X), from !is_set_loopn,
|
||||
apply pEMadd1_pequiv' (!trunc_equiv⁻¹ᵉ ⬝e equiv_of_isomorphism e),
|
||||
intro p q, esimp, exact to_respect_mul e (tr p) (tr q)
|
||||
end
|
||||
|
||||
definition EM_pequiv_succ {G : CommGroup} {X : Type*} {n : ℕ} (e : πg[n+1] X ≃g G)
|
||||
[H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : EM G (succ n) ≃* X :=
|
||||
pEMadd1_pequiv e
|
||||
|
||||
definition EM_pequiv_zero {G : CommGroup} {X : Type*} (e : X ≃* pType_of_Group G) : EM G 0 ≃* X :=
|
||||
proof e⁻¹ᵉ* qed
|
||||
|
||||
definition EM_spectrum /-[constructor]-/ (G : CommGroup) : spectrum :=
|
||||
spectrum.Mk (K G) (λn, (loop_EM G n)⁻¹ᵉ*)
|
||||
|
||||
/- uniqueness of K(G,n), method 2: -/
|
||||
|
||||
-- definition freudenthal_homotopy_group_pequiv (A : Type*) {n k : ℕ} [is_conn n A] (H : k ≤ 2 * n)
|
||||
-- : π*[k + 1] (psusp A) ≃* π*[k] A :=
|
||||
-- calc
|
||||
-- π*[k + 1] (psusp A) ≃* π*[k] (Ω (psusp A)) : pequiv_of_eq (homotopy_group_succ_in (psusp A) k)
|
||||
-- ... ≃* Ω[k] (ptrunc k (Ω (psusp A))) : homotopy_group_pequiv_loop_ptrunc k (Ω (psusp A))
|
||||
-- ... ≃* Ω[k] (ptrunc k A) : loopn_pequiv_loopn k (freudenthal_pequiv A H)
|
||||
-- ... ≃* π*[k] A : (homotopy_group_pequiv_loop_ptrunc k A)⁻¹ᵉ*
|
||||
|
||||
definition iterate_psusp_succ_pequiv (n : ℕ) (A : Type*) :
|
||||
iterate_psusp (succ n) A ≃* iterate_psusp n (psusp A) :=
|
||||
begin
|
||||
induction n with n IH,
|
||||
{ reflexivity},
|
||||
{ exact psusp_equiv IH}
|
||||
end
|
||||
|
||||
definition is_conn_psusp [instance] (n : trunc_index) (A : Type*)
|
||||
[H : is_conn n A] : is_conn (n .+1) (psusp A) :=
|
||||
is_conn_susp n A
|
||||
|
||||
definition iterated_freudenthal_pequiv (A : Type*) {n k m : ℕ} [HA : is_conn n A] (H : k ≤ 2 * n)
|
||||
: ptrunc k A ≃* ptrunc k (Ω[m] (iterate_psusp m A)) :=
|
||||
begin
|
||||
revert A n k HA H, induction m with m IH: intro A n k HA H,
|
||||
{ reflexivity},
|
||||
{ have H2 : succ k ≤ 2 * succ n,
|
||||
from calc
|
||||
succ k ≤ succ (2 * n) : succ_le_succ H
|
||||
... ≤ 2 * succ n : self_le_succ,
|
||||
exact calc
|
||||
ptrunc k A ≃* ptrunc k (Ω (psusp A)) : freudenthal_pequiv A H
|
||||
... ≃* Ω (ptrunc (succ k) (psusp A)) : loop_ptrunc_pequiv
|
||||
... ≃* Ω (ptrunc (succ k) (Ω[m] (iterate_psusp m (psusp A)))) :
|
||||
loop_pequiv_loop (IH (psusp A) (succ n) (succ k) _ H2)
|
||||
... ≃* ptrunc k (Ω[succ m] (iterate_psusp m (psusp A))) : loop_ptrunc_pequiv
|
||||
... ≃* ptrunc k (Ω[succ m] (iterate_psusp (succ m) A)) :
|
||||
ptrunc_pequiv_ptrunc _ (loopn_pequiv_loopn _ !iterate_psusp_succ_pequiv)}
|
||||
end
|
||||
|
||||
definition pmap_eq_of_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) : f = g :=
|
||||
pmap_eq (to_homotopy p) (to_homotopy_pt p)⁻¹
|
||||
|
||||
definition pmap_equiv_pmap_right {A B : Type*} (C : Type*) (f : A ≃* B) : C →* A ≃ C →* B :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ exact pcompose f},
|
||||
{ exact pcompose f⁻¹ᵉ*},
|
||||
{ intro f, apply pmap_eq_of_phomotopy,
|
||||
exact !passoc⁻¹* ⬝* pwhisker_right _ !pright_inv ⬝* !pid_pcompose},
|
||||
{ intro f, apply pmap_eq_of_phomotopy,
|
||||
exact !passoc⁻¹* ⬝* pwhisker_right _ !pleft_inv ⬝* !pid_pcompose}
|
||||
end
|
||||
|
||||
definition iterate_psusp_adjoint_loopn [constructor] (X Y : Type*) (n : ℕ) :
|
||||
iterate_psusp n X →* Y ≃ X →* Ω[n] Y :=
|
||||
begin
|
||||
revert X Y, induction n with n IH: intro X Y,
|
||||
{ reflexivity},
|
||||
{ refine !susp_adjoint_loop ⬝e !IH ⬝e _, apply pmap_equiv_pmap_right,
|
||||
symmetry, apply loopn_succ_in}
|
||||
end
|
||||
|
||||
end EM
|
||||
-- cohomology ∥ X → K(G,n) ∥
|
||||
-- reduced cohomology ∥ X →* K(G,n) ∥
|
||||
-- but we probably want to do this for any spectrum
|
|
@ -6,26 +6,29 @@ Authors: Floris van Doorn
|
|||
Reduced cohomology
|
||||
-/
|
||||
|
||||
import .EM algebra.arrow_group
|
||||
import algebra.arrow_group .spectrum homotopy.EM
|
||||
|
||||
open eq spectrum int trunc pointed EM group algebra circle sphere nat
|
||||
open eq spectrum int trunc pointed EM group algebra circle sphere nat EM.ops
|
||||
|
||||
definition cohomology (X : Type*) (Y : spectrum) (n : ℤ) : CommGroup :=
|
||||
CommGroup_pmap X (πag[2] (Y (2+n)))
|
||||
definition EM_spectrum /-[constructor]-/ (G : AbGroup) : spectrum :=
|
||||
spectrum.Mk (K G) (λn, (loop_EM G n)⁻¹ᵉ*)
|
||||
|
||||
definition ordinary_cohomology [reducible] (X : Type*) (G : CommGroup) (n : ℤ) : CommGroup :=
|
||||
definition cohomology (X : Type*) (Y : spectrum) (n : ℤ) : AbGroup :=
|
||||
AbGroup_pmap X (πag[2] (Y (2+n)))
|
||||
|
||||
definition ordinary_cohomology [reducible] (X : Type*) (G : AbGroup) (n : ℤ) : AbGroup :=
|
||||
cohomology X (EM_spectrum G) n
|
||||
|
||||
definition ordinary_cohomology_Z [reducible] (X : Type*) (n : ℤ) : CommGroup :=
|
||||
definition ordinary_cohomology_Z [reducible] (X : Type*) (n : ℤ) : AbGroup :=
|
||||
ordinary_cohomology X agℤ n
|
||||
|
||||
notation `H^` n `[`:0 X:0 `, ` Y:0 `]`:0 := cohomology X Y n
|
||||
notation `H^` n `[`:0 X:0 `]`:0 := ordinary_cohomology_Z X n
|
||||
|
||||
check H^3[S¹*,EM_spectrum agℤ]
|
||||
check H^3[S¹*]
|
||||
-- check H^3[S¹*,EM_spectrum agℤ]
|
||||
-- check H^3[S¹*]
|
||||
|
||||
definition unpointed_cohomology (X : Type) (Y : spectrum) (n : ℤ) : CommGroup :=
|
||||
definition unpointed_cohomology (X : Type) (Y : spectrum) (n : ℤ) : AbGroup :=
|
||||
cohomology X₊ Y n
|
||||
|
||||
definition cohomology_homomorphism [constructor] {X X' : Type*} (f : X' →* X) (Y : spectrum)
|
||||
|
|
|
@ -51,11 +51,11 @@ namespace sphere
|
|||
end
|
||||
|
||||
definition deg {n : ℕ} [H : is_succ n] (f : S* n →* S* n) : ℤ :=
|
||||
by induction H with n; exact πnSn n ((π→g[n+1] f) (tr surf))
|
||||
by induction H with n; exact πnSn n (π→g[n+1] f (tr surf))
|
||||
|
||||
definition deg_id (n : ℕ) [H : is_succ n] : deg (pid (S* n)) = (1 : ℤ) :=
|
||||
by induction H with n;
|
||||
exact ap (πnSn n) (phomotopy_group_functor_pid (succ n) (S* (succ n)) (tr surf)) ⬝ πnSn_surf n
|
||||
exact ap (πnSn n) (homotopy_group_functor_pid (succ n) (S* (succ n)) (tr surf)) ⬝ πnSn_surf n
|
||||
|
||||
definition deg_phomotopy {n : ℕ} [H : is_succ n] {f g : S* n →* S* n} (p : f ~* g) :
|
||||
deg f = deg g :=
|
||||
|
@ -94,7 +94,7 @@ namespace sphere
|
|||
apply eq_one_or_eq_neg_one_of_mul_eq_one (deg f⁻¹ᵉ*),
|
||||
refine !deg_compose⁻¹ ⬝ _,
|
||||
refine deg_phomotopy (pright_inv f) ⬝ _,
|
||||
apply deg_id,
|
||||
apply deg_id
|
||||
end
|
||||
|
||||
end sphere
|
||||
|
|
|
@ -175,7 +175,7 @@ namespace homotopy
|
|||
apply trunc.rec,
|
||||
intro a',
|
||||
apply pathover_of_tr_eq,
|
||||
rewrite [transport_eq_Fr,idp_con],
|
||||
rewrite [eq_transport_Fr,idp_con],
|
||||
revert H, induction n with [n, IH],
|
||||
{ intro H, apply is_prop.elim },
|
||||
{ intros H,
|
||||
|
|
|
@ -1,179 +1,9 @@
|
|||
-- Authors: Floris van Doorn
|
||||
|
||||
/-
|
||||
In this file we define the smash type. This is the cofiber of the map
|
||||
wedge A B → A × B
|
||||
However, we define it (equivalently) as the pushout of the maps A + B → 2 and A + B → A × B.
|
||||
-/
|
||||
|
||||
import homotopy.circle homotopy.join types.pointed homotopy.cofiber ..move_to_lib
|
||||
import homotopy.smash
|
||||
|
||||
open bool pointed eq equiv is_equiv sum bool prod unit circle cofiber prod.ops wedge
|
||||
|
||||
namespace smash
|
||||
|
||||
variables {A B : Type*}
|
||||
|
||||
section
|
||||
open pushout
|
||||
|
||||
definition prod_of_sum [unfold 3] (u : A + B) : A × B :=
|
||||
by induction u with a b; exact (a, pt); exact (pt, b)
|
||||
|
||||
definition bool_of_sum [unfold 3] (u : A + B) : bool :=
|
||||
by induction u; exact ff; exact tt
|
||||
|
||||
definition smash' (A B : Type*) : Type := pushout (@prod_of_sum A B) (@bool_of_sum A B)
|
||||
protected definition mk (a : A) (b : B) : smash' A B := inl (a, b)
|
||||
|
||||
definition smash [constructor] (A B : Type*) : Type* :=
|
||||
pointed.MK (smash' A B) (smash.mk pt pt)
|
||||
|
||||
definition auxl : smash A B := inr ff
|
||||
definition auxr : smash A B := inr tt
|
||||
definition gluel (a : A) : smash.mk a pt = auxl :> smash A B := glue (inl a)
|
||||
definition gluer (b : B) : smash.mk pt b = auxr :> smash A B := glue (inr b)
|
||||
|
||||
end
|
||||
|
||||
definition gluel' (a a' : A) : smash.mk a pt = smash.mk a' pt :> smash A B :=
|
||||
gluel a ⬝ (gluel a')⁻¹
|
||||
definition gluer' (b b' : B) : smash.mk pt b = smash.mk pt b' :> smash A B :=
|
||||
gluer b ⬝ (gluer b')⁻¹
|
||||
definition glue (a : A) (b : B) : smash.mk a pt = smash.mk pt b :=
|
||||
gluel' a pt ⬝ gluer' pt b
|
||||
|
||||
definition glue_pt_left (b : B) : glue (Point A) b = gluer' pt b :=
|
||||
whisker_right !con.right_inv _ ⬝ !idp_con
|
||||
|
||||
definition glue_pt_right (a : A) : glue a (Point B) = gluel' a pt :=
|
||||
proof whisker_left _ !con.right_inv qed
|
||||
|
||||
definition ap_mk_left {a a' : A} (p : a = a') : ap (λa, smash.mk a (Point B)) p = gluel' a a' :=
|
||||
by induction p; exact !con.right_inv⁻¹
|
||||
|
||||
definition ap_mk_right {b b' : B} (p : b = b') : ap (smash.mk (Point A)) p = gluer' b b' :=
|
||||
by induction p; exact !con.right_inv⁻¹
|
||||
|
||||
protected definition rec {P : smash A B → Type} (Pmk : Πa b, P (smash.mk a b))
|
||||
(Pl : P auxl) (Pr : P auxr) (Pgl : Πa, Pmk a pt =[gluel a] Pl)
|
||||
(Pgr : Πb, Pmk pt b =[gluer b] Pr) (x : smash' A B) : P x :=
|
||||
begin
|
||||
induction x with x b u,
|
||||
{ induction x with a b, exact Pmk a b },
|
||||
{ induction b, exact Pl, exact Pr },
|
||||
{ induction u: esimp,
|
||||
{ apply Pgl },
|
||||
{ apply Pgr }}
|
||||
end
|
||||
|
||||
-- a rec which is easier to prove, but with worse computational properties
|
||||
protected definition rec' {P : smash A B → Type} (Pmk : Πa b, P (smash.mk a b))
|
||||
(Pg : Πa b, Pmk a pt =[glue a b] Pmk pt b) (x : smash' A B) : P x :=
|
||||
begin
|
||||
induction x using smash.rec,
|
||||
{ apply Pmk },
|
||||
{ exact gluel pt ▸ Pmk pt pt },
|
||||
{ exact gluer pt ▸ Pmk pt pt },
|
||||
{ refine change_path _ (Pg a pt ⬝o !pathover_tr),
|
||||
refine whisker_right !glue_pt_right _ ⬝ _, esimp, refine !con.assoc ⬝ _,
|
||||
apply whisker_left, apply con.left_inv },
|
||||
{ refine change_path _ ((Pg pt b)⁻¹ᵒ ⬝o !pathover_tr),
|
||||
refine whisker_right !glue_pt_left⁻² _ ⬝ _,
|
||||
refine whisker_right !inv_con_inv_right _ ⬝ _, refine !con.assoc ⬝ _,
|
||||
apply whisker_left, apply con.left_inv }
|
||||
end
|
||||
|
||||
theorem rec_gluel {P : smash A B → Type} {Pmk : Πa b, P (smash.mk a b)}
|
||||
{Pl : P auxl} {Pr : P auxr} (Pgl : Πa, Pmk a pt =[gluel a] Pl)
|
||||
(Pgr : Πb, Pmk pt b =[gluer b] Pr) (a : A) :
|
||||
apd (smash.rec Pmk Pl Pr Pgl Pgr) (gluel a) = Pgl a :=
|
||||
!pushout.rec_glue
|
||||
|
||||
theorem rec_gluer {P : smash A B → Type} {Pmk : Πa b, P (smash.mk a b)}
|
||||
{Pl : P auxl} {Pr : P auxr} (Pgl : Πa, Pmk a pt =[gluel a] Pl)
|
||||
(Pgr : Πb, Pmk pt b =[gluer b] Pr) (b : B) :
|
||||
apd (smash.rec Pmk Pl Pr Pgl Pgr) (gluer b) = Pgr b :=
|
||||
!pushout.rec_glue
|
||||
|
||||
theorem rec_glue {P : smash A B → Type} {Pmk : Πa b, P (smash.mk a b)}
|
||||
{Pl : P auxl} {Pr : P auxr} (Pgl : Πa, Pmk a pt =[gluel a] Pl)
|
||||
(Pgr : Πb, Pmk pt b =[gluer b] Pr) (a : A) (b : B) :
|
||||
apd (smash.rec Pmk Pl Pr Pgl Pgr) (glue a b) =
|
||||
(Pgl a ⬝o (Pgl pt)⁻¹ᵒ) ⬝o (Pgr pt ⬝o (Pgr b)⁻¹ᵒ) :=
|
||||
by rewrite [↑glue, ↑gluel', ↑gluer', +apd_con, +apd_inv, +rec_gluel, +rec_gluer]
|
||||
|
||||
protected definition elim {P : Type} (Pmk : Πa b, P) (Pl Pr : P)
|
||||
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (x : smash' A B) : P :=
|
||||
smash.rec Pmk Pl Pr (λa, pathover_of_eq _ (Pgl a)) (λb, pathover_of_eq _ (Pgr b)) x
|
||||
|
||||
-- an elim which is easier to prove, but with worse computational properties
|
||||
protected definition elim' {P : Type} (Pmk : Πa b, P) (Pg : Πa b, Pmk a pt = Pmk pt b)
|
||||
(x : smash' A B) : P :=
|
||||
smash.rec' Pmk (λa b, pathover_of_eq _ (Pg a b)) x
|
||||
|
||||
theorem elim_gluel {P : Type} {Pmk : Πa b, P} {Pl Pr : P}
|
||||
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (a : A) :
|
||||
ap (smash.elim Pmk Pl Pr Pgl Pgr) (gluel a) = Pgl a :=
|
||||
begin
|
||||
apply eq_of_fn_eq_fn_inv !(pathover_constant (@gluel A B a)),
|
||||
rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑smash.elim,rec_gluel],
|
||||
end
|
||||
|
||||
theorem elim_gluer {P : Type} {Pmk : Πa b, P} {Pl Pr : P}
|
||||
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (b : B) :
|
||||
ap (smash.elim Pmk Pl Pr Pgl Pgr) (gluer b) = Pgr b :=
|
||||
begin
|
||||
apply eq_of_fn_eq_fn_inv !(pathover_constant (@gluer A B b)),
|
||||
rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑smash.elim,rec_gluer],
|
||||
end
|
||||
|
||||
theorem elim_glue {P : Type} {Pmk : Πa b, P} {Pl Pr : P}
|
||||
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (a : A) (b : B) :
|
||||
ap (smash.elim Pmk Pl Pr Pgl Pgr) (glue a b) = (Pgl a ⬝ (Pgl pt)⁻¹) ⬝ (Pgr pt ⬝ (Pgr b)⁻¹) :=
|
||||
by rewrite [↑glue, ↑gluel', ↑gluer', +ap_con, +ap_inv, +elim_gluel, +elim_gluer]
|
||||
|
||||
end smash
|
||||
open smash
|
||||
attribute smash.mk auxl auxr [constructor]
|
||||
attribute smash.rec smash.elim [unfold 9] [recursor 9]
|
||||
attribute smash.rec' smash.elim' [unfold 6]
|
||||
|
||||
namespace smash
|
||||
|
||||
variables {A B : Type*}
|
||||
|
||||
definition of_smash_pbool [unfold 2] (x : smash A pbool) : A :=
|
||||
begin
|
||||
induction x,
|
||||
{ induction b, exact pt, exact a },
|
||||
{ exact pt },
|
||||
{ exact pt },
|
||||
{ reflexivity },
|
||||
{ induction b: reflexivity }
|
||||
end
|
||||
|
||||
definition smash_pbool_equiv [constructor] (A : Type*) : smash A pbool ≃* A :=
|
||||
begin
|
||||
fapply pequiv_of_equiv,
|
||||
{ fapply equiv.MK,
|
||||
{ exact of_smash_pbool },
|
||||
{ intro a, exact smash.mk a tt },
|
||||
{ intro a, reflexivity },
|
||||
{ exact abstract begin intro x, induction x using smash.rec',
|
||||
{ induction b, exact (glue a tt)⁻¹, reflexivity },
|
||||
{ apply eq_pathover_id_right, induction b: esimp,
|
||||
{ refine ap02 _ !glue_pt_right ⬝ph _,
|
||||
refine ap_compose (λx, smash.mk x _) _ _ ⬝ph _,
|
||||
refine ap02 _ (!ap_con ⬝ (!elim_gluel ◾ (!ap_inv ⬝ !elim_gluel⁻²))) ⬝ph _,
|
||||
apply hinverse, apply square_of_eq,
|
||||
esimp, refine (!glue_pt_right ◾ !glue_pt_left)⁻¹ },
|
||||
{ apply square_of_eq, refine !con.left_inv ⬝ _, esimp, symmetry,
|
||||
refine ap_compose (λx, smash.mk x _) _ _ ⬝ _,
|
||||
exact ap02 _ !elim_glue }} end end }},
|
||||
{ reflexivity }
|
||||
end
|
||||
|
||||
/- smash A (susp B) = susp (smash A B) <- this follows from associativity and smash with S¹-/
|
||||
|
||||
/- To prove: Σ(X × Y) ≃ ΣX ∨ ΣY ∨ Σ(X ∧ Y) (notation means suspension, wedge, smash),
|
||||
|
@ -183,7 +13,11 @@ namespace smash
|
|||
|
||||
/- smash A B ≃ pcofiber (pprod_of_pwedge A B) -/
|
||||
|
||||
definition prod_of_pwedge [unfold 3] (v : pwedge' A B) : A × B :=
|
||||
namespace smash
|
||||
|
||||
variables {A B : Type*}
|
||||
|
||||
definition prod_of_wedge [unfold 3] (v : pwedge A B) : A × B :=
|
||||
begin
|
||||
induction v with a b ,
|
||||
{ exact (a, pt) },
|
||||
|
@ -191,18 +25,17 @@ namespace smash
|
|||
{ reflexivity }
|
||||
end
|
||||
|
||||
definition pprod_of_pwedge [constructor] : pwedge' A B →* A ×* B :=
|
||||
variables (A B)
|
||||
definition pprod_of_pwedge [constructor] : pwedge A B →* A ×* B :=
|
||||
begin
|
||||
fconstructor,
|
||||
{ intro v, induction v with a b ,
|
||||
{ exact (a, pt) },
|
||||
{ exact (pt, b) },
|
||||
{ reflexivity }},
|
||||
{ exact prod_of_wedge },
|
||||
{ reflexivity }
|
||||
end
|
||||
|
||||
variables {A B}
|
||||
attribute pcofiber [constructor]
|
||||
definition pcofiber_of_smash (x : smash A B) : pcofiber' (@pprod_of_pwedge A B) :=
|
||||
definition pcofiber_of_smash [unfold 3] (x : smash A B) : pcofiber (@pprod_of_pwedge A B) :=
|
||||
begin
|
||||
induction x,
|
||||
{ exact pushout.inr (a, b) },
|
||||
|
@ -212,26 +45,72 @@ namespace smash
|
|||
{ symmetry, exact pushout.glue (pushout.inr b) }
|
||||
end
|
||||
|
||||
-- move
|
||||
definition ap_eq_ap011 {A B C X : Type} (f : A → B → C) (g : X → A) (h : X → B) {x x' : X}
|
||||
(p : x = x') : ap (λx, f (g x) (h x)) p = ap011 f (ap g p) (ap h p) :=
|
||||
by induction p; reflexivity
|
||||
|
||||
definition smash_of_pcofiber (x : pcofiber' (@pprod_of_pwedge A B)) : smash A B :=
|
||||
definition smash_of_pcofiber_glue [unfold 3] (x : pwedge A B) :
|
||||
Point (smash A B) = smash.mk (prod_of_wedge x).1 (prod_of_wedge x).2 :=
|
||||
begin
|
||||
induction x with a b: esimp,
|
||||
{ apply gluel' },
|
||||
{ apply gluer' },
|
||||
{ apply eq_pathover_constant_left, refine _ ⬝hp (ap_eq_ap011 smash.mk _ _ _)⁻¹,
|
||||
rewrite [ap_compose' prod.pr1, ap_compose' prod.pr2],
|
||||
-- TODO: define elim_glue for wedges and remove k in krewrite
|
||||
krewrite [pushout.elim_glue], esimp, apply vdeg_square,
|
||||
exact !con.right_inv ⬝ !con.right_inv⁻¹ }
|
||||
end
|
||||
|
||||
definition smash_of_pcofiber [unfold 3] (x : pcofiber (pprod_of_pwedge A B)) : smash A B :=
|
||||
begin
|
||||
induction x with x x,
|
||||
{ exact smash.mk pt pt },
|
||||
{ exact smash.mk x.1 x.2 },
|
||||
{ induction x with a b: esimp,
|
||||
{ apply gluel' },
|
||||
{ apply gluer' },
|
||||
{ apply eq_pathover_constant_left, refine _ ⬝hp (ap_eq_ap011 smash.mk _ _ _)⁻¹,
|
||||
unfold [wedge.elim],
|
||||
rewrite [ap_compose' prod.pr1, ap_compose' prod.pr2],
|
||||
-- TODO: define elim_glue for wedges and remove krewrite
|
||||
krewrite [pushout.elim_glue], esimp, apply vdeg_square,
|
||||
exact !con.right_inv ⬝ !con.right_inv⁻¹ }}
|
||||
{ exact smash_of_pcofiber_glue x }
|
||||
end
|
||||
|
||||
definition pcofiber_of_smash_of_pcofiber (x : pcofiber (pprod_of_pwedge A B)) :
|
||||
pcofiber_of_smash (smash_of_pcofiber x) = x :=
|
||||
begin
|
||||
induction x with x x,
|
||||
{ refine (pushout.glue pt)⁻¹ },
|
||||
{ exact sorry },
|
||||
{ exact sorry }
|
||||
end
|
||||
|
||||
definition smash_of_pcofiber_of_smash (x : smash A B) :
|
||||
smash_of_pcofiber (pcofiber_of_smash x) = x :=
|
||||
begin
|
||||
induction x,
|
||||
{ reflexivity },
|
||||
{ apply gluel },
|
||||
{ apply gluer },
|
||||
{ apply eq_pathover_id_right, refine ap_compose smash_of_pcofiber _ _ ⬝ph _,
|
||||
refine ap02 _ !elim_gluel ⬝ph _, refine !ap_inv ⬝ph _, refine !pushout.elim_glue⁻² ⬝ph _,
|
||||
esimp, apply square_of_eq, refine !idp_con ⬝ _ ⬝ whisker_right _ !inv_con_inv_right⁻¹,
|
||||
exact !inv_con_cancel_right⁻¹ },
|
||||
{ apply eq_pathover_id_right, refine ap_compose smash_of_pcofiber _ _ ⬝ph _,
|
||||
refine ap02 _ !elim_gluer ⬝ph _, refine !ap_inv ⬝ph _, refine !pushout.elim_glue⁻² ⬝ph _,
|
||||
esimp, apply square_of_eq, refine !idp_con ⬝ _ ⬝ whisker_right _ !inv_con_inv_right⁻¹,
|
||||
exact !inv_con_cancel_right⁻¹ },
|
||||
end
|
||||
|
||||
variables (A B)
|
||||
definition smash_pequiv_pcofiber : smash A B ≃* pcofiber (pprod_of_pwedge A B) :=
|
||||
begin
|
||||
fapply pequiv_of_equiv,
|
||||
{ fapply equiv.MK,
|
||||
{ apply pcofiber_of_smash },
|
||||
{ apply smash_of_pcofiber },
|
||||
{ exact pcofiber_of_smash_of_pcofiber },
|
||||
{ exact smash_of_pcofiber_of_smash }},
|
||||
{ esimp, symmetry, apply pushout.glue pt }
|
||||
end
|
||||
|
||||
variables {A B}
|
||||
|
||||
/- smash A S¹ = susp A -/
|
||||
open susp
|
||||
|
||||
|
@ -268,7 +147,7 @@ exit -- the definitions below compile, but take a long time to do so and have so
|
|||
apply square_of_eq, rewrite [+con.assoc], apply whisker_left, apply whisker_left,
|
||||
symmetry, apply con_eq_of_eq_inv_con, esimp, apply con_eq_of_eq_con_inv,
|
||||
refine _⁻² ⬝ !con_inv, refine _ ⬝ !con.assoc,
|
||||
refine _ ⬝ whisker_right !inv_con_cancel_right⁻¹ _, refine _ ⬝ !con.right_inv⁻¹,
|
||||
refine _ ⬝ whisker_right _ !inv_con_cancel_right⁻¹, refine _ ⬝ !con.right_inv⁻¹,
|
||||
refine !con.right_inv ◾ _, refine _ ◾ !con.right_inv,
|
||||
refine !ap_mk_right ⬝ !con.right_inv end end }
|
||||
end
|
||||
|
@ -281,7 +160,7 @@ exit -- the definitions below compile, but take a long time to do so and have so
|
|||
begin
|
||||
refine ap02 _ !elim_gluer ⬝ph _,
|
||||
induction b,
|
||||
{ apply square_of_eq, exact whisker_right !con.right_inv _ },
|
||||
{ apply square_of_eq, exact whisker_right _ !con.right_inv },
|
||||
{ apply square_pathover', exact sorry }
|
||||
end
|
||||
|
||||
|
@ -314,7 +193,7 @@ exit -- the definitions below compile, but take a long time to do so and have so
|
|||
refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _,
|
||||
refine ap02 _ !elim_gluer ⬝ph _,
|
||||
induction b,
|
||||
{ apply square_of_eq, exact whisker_right !con.right_inv _ },
|
||||
{ apply square_of_eq, exact whisker_right _ !con.right_inv },
|
||||
{ exact sorry}
|
||||
}}},
|
||||
{ reflexivity }
|
||||
|
|
|
@ -6,6 +6,7 @@ Authors: Michael Shulman, Floris van Doorn
|
|||
-/
|
||||
|
||||
import homotopy.LES_of_homotopy_groups .splice homotopy.susp ..move_to_lib ..colim
|
||||
..pointed_pi
|
||||
open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group
|
||||
seq_colim
|
||||
|
||||
|
@ -190,7 +191,7 @@ namespace spectrum
|
|||
|
||||
-- Suspension prespectra are one that's naturally indexed on the natural numbers
|
||||
definition psp_susp (X : Type*) : gen_prespectrum +ℕ :=
|
||||
gen_prespectrum.mk (λn, psuspn n X) (λn, loop_susp_unit (psuspn n X))
|
||||
gen_prespectrum.mk (λn, psuspn n X) (λn, loop_psusp_unit (psuspn n X))
|
||||
|
||||
/- Truncations -/
|
||||
|
||||
|
@ -210,7 +211,7 @@ namespace spectrum
|
|||
-- read off the homotopy groups without any tedious case-analysis of
|
||||
-- n. We increment by 2 in order to ensure that they are all
|
||||
-- automatically abelian groups.
|
||||
definition shomotopy_group [constructor] (n : ℤ) (E : spectrum) : CommGroup := πag[0+2] (E (2 - n))
|
||||
definition shomotopy_group [constructor] (n : ℤ) (E : spectrum) : AbGroup := πag[0+2] (E (2 - n))
|
||||
|
||||
notation `πₛ[`:95 n:0 `]`:0 := shomotopy_group n
|
||||
|
||||
|
@ -234,9 +235,10 @@ namespace spectrum
|
|||
-- Sections of parametrized spectra
|
||||
----------------------------------------
|
||||
|
||||
definition spi {N : succ_str} (A : Type) (E : A -> gen_spectrum N) : gen_spectrum N :=
|
||||
spectrum.MK (λn, ppi (λa, E a n))
|
||||
(λn, (loop_ppi_commute (λa, E a (S n)))⁻¹ᵉ* ∘*ᵉ equiv_ppi_right (λa, equiv_glue (E a) n))
|
||||
-- this definition must be changed to use dependent maps respecting the basepoint, presumably
|
||||
-- definition spi {N : succ_str} (A : Type) (E : A -> gen_spectrum N) : gen_spectrum N :=
|
||||
-- spectrum.MK (λn, ppi (λa, E a n))
|
||||
-- (λn, (loop_ppi_commute (λa, E a (S n)))⁻¹ᵉ* ∘*ᵉ equiv_ppi_right (λa, equiv_glue (E a) n))
|
||||
|
||||
/-----------------------------------------
|
||||
Fibers and long exact sequences
|
||||
|
@ -311,12 +313,12 @@ namespace spectrum
|
|||
example (n : ℤ) : cc_to_fn LES_of_shomotopy_groups (n, 1) = πₛ→[n] (spoint f) := idp
|
||||
-- the maps are ugly for (n, 2)
|
||||
|
||||
definition comm_group_LES_of_shomotopy_groups : Π(v : +3ℤ), comm_group (LES_of_shomotopy_groups v)
|
||||
| (n, fin.mk 0 H) := proof CommGroup.struct (πₛ[n] Y) qed
|
||||
| (n, fin.mk 1 H) := proof CommGroup.struct (πₛ[n] X) qed
|
||||
| (n, fin.mk 2 H) := proof CommGroup.struct (πₛ[n] (sfiber f)) qed
|
||||
definition ab_group_LES_of_shomotopy_groups : Π(v : +3ℤ), ab_group (LES_of_shomotopy_groups v)
|
||||
| (n, fin.mk 0 H) := proof AbGroup.struct (πₛ[n] Y) qed
|
||||
| (n, fin.mk 1 H) := proof AbGroup.struct (πₛ[n] X) qed
|
||||
| (n, fin.mk 2 H) := proof AbGroup.struct (πₛ[n] (sfiber f)) qed
|
||||
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
||||
local attribute comm_group_LES_of_shomotopy_groups [instance]
|
||||
local attribute ab_group_LES_of_shomotopy_groups [instance]
|
||||
|
||||
definition is_homomorphism_LES_of_shomotopy_groups :
|
||||
Π(v : +3ℤ), is_homomorphism (cc_to_fn LES_of_shomotopy_groups v)
|
||||
|
@ -330,7 +332,7 @@ namespace spectrum
|
|||
-- In the comments below is a start on an explicit description of the LES for spectra
|
||||
-- Maybe it's slightly nicer to work with than the above version
|
||||
|
||||
-- definition shomotopy_groups [reducible] : -3ℤ → CommGroup
|
||||
-- definition shomotopy_groups [reducible] : -3ℤ → AbGroup
|
||||
-- | (n, fin.mk 0 H) := πₛ[n] Y
|
||||
-- | (n, fin.mk 1 H) := πₛ[n] X
|
||||
-- | (n, fin.mk k H) := πₛ[n] (sfiber f)
|
||||
|
|
|
@ -90,7 +90,7 @@ namespace spherical_fibrations
|
|||
definition BF_mul {n m : ℕ} (X : BF n) (Y : BF m) : BF (n + m) :=
|
||||
begin
|
||||
cases X with X hX, cases Y with Y hY,
|
||||
apply sigma.mk (psmash X Y),
|
||||
apply sigma.mk (smash X Y),
|
||||
induction hX with fX, induction hY with fY, apply tr,
|
||||
exact sorry -- needs smash.spheres : psmash (S. n) (S. m) ≃ S. (n + m)
|
||||
end
|
||||
|
|
|
@ -5,80 +5,27 @@ import homotopy.sphere2 homotopy.cofiber homotopy.wedge
|
|||
open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group
|
||||
is_trunc function sphere
|
||||
|
||||
attribute equiv.symm equiv.trans is_equiv.is_equiv_ap fiber.equiv_postcompose
|
||||
fiber.equiv_precompose pequiv.to_pmap pequiv._trans_of_to_pmap ghomotopy_group_succ_in
|
||||
isomorphism_of_eq pmap_bool_equiv sphere_equiv_bool psphere_pequiv_pbool fiber_eq_equiv int.equiv_succ
|
||||
[constructor]
|
||||
attribute is_equiv.eq_of_fn_eq_fn' [unfold 3]
|
||||
attribute isomorphism._trans_of_to_hom [unfold 3]
|
||||
attribute homomorphism.struct [unfold 3]
|
||||
attribute pequiv.trans pequiv.symm [constructor]
|
||||
|
||||
namespace sigma
|
||||
|
||||
definition sigma_equiv_sigma_left' [constructor] {A A' : Type} {B : A' → Type} (Hf : A ≃ A') : (Σa, B (Hf a)) ≃ (Σa', B a') :=
|
||||
sigma_equiv_sigma Hf (λa, erfl)
|
||||
|
||||
end sigma
|
||||
open sigma
|
||||
|
||||
namespace group
|
||||
open is_trunc
|
||||
|
||||
-- some extra instances for type class inference
|
||||
definition is_homomorphism_comm_homomorphism [instance] {G G' : CommGroup} (φ : G →g G')
|
||||
: @is_homomorphism G G' (@comm_group.to_group _ (CommGroup.struct G))
|
||||
(@comm_group.to_group _ (CommGroup.struct G')) φ :=
|
||||
homomorphism.struct φ
|
||||
-- definition is_homomorphism_comm_homomorphism [instance] {G G' : AbGroup} (φ : G →g G')
|
||||
-- : @is_homomorphism G G' (@ab_group.to_group _ (AbGroup.struct G))
|
||||
-- (@ab_group.to_group _ (AbGroup.struct G')) φ :=
|
||||
-- homomorphism.struct φ
|
||||
|
||||
definition is_homomorphism_comm_homomorphism1 [instance] {G G' : CommGroup} (φ : G →g G')
|
||||
: @is_homomorphism G G' _
|
||||
(@comm_group.to_group _ (CommGroup.struct G')) φ :=
|
||||
homomorphism.struct φ
|
||||
-- definition is_homomorphism_comm_homomorphism1 [instance] {G G' : AbGroup} (φ : G →g G')
|
||||
-- : @is_homomorphism G G' _
|
||||
-- (@ab_group.to_group _ (AbGroup.struct G')) φ :=
|
||||
-- homomorphism.struct φ
|
||||
|
||||
definition is_homomorphism_comm_homomorphism2 [instance] {G G' : CommGroup} (φ : G →g G')
|
||||
: @is_homomorphism G G' (@comm_group.to_group _ (CommGroup.struct G)) _ φ :=
|
||||
homomorphism.struct φ
|
||||
|
||||
theorem inv_eq_one {A : Type} [group A] {a : A} (H : a = 1) : a⁻¹ = 1 :=
|
||||
iff.mpr (inv_eq_one_iff_eq_one a) H
|
||||
|
||||
definition pSet_of_Group (G : Group) : Set* := ptrunctype.mk G _ 1
|
||||
|
||||
definition pmap_of_isomorphism [constructor] {G₁ : Group} {G₂ : Group}
|
||||
(φ : G₁ ≃g G₂) : pType_of_Group G₁ →* pType_of_Group G₂ :=
|
||||
pequiv_of_isomorphism φ
|
||||
|
||||
definition pequiv_of_isomorphism_of_eq {G₁ G₂ : Group} (p : G₁ = G₂) :
|
||||
pequiv_of_isomorphism (isomorphism_of_eq p) = pequiv_of_eq (ap pType_of_Group p) :=
|
||||
begin
|
||||
induction p,
|
||||
apply pequiv_eq,
|
||||
fapply pmap_eq,
|
||||
{ intro g, reflexivity},
|
||||
{ apply is_prop.elim}
|
||||
end
|
||||
|
||||
definition homomorphism_change_fun [constructor] {G₁ G₂ : Group}
|
||||
(φ : G₁ →g G₂) (f : G₁ → G₂) (p : φ ~ f) : G₁ →g G₂ :=
|
||||
homomorphism.mk f (λg h, (p (g * h))⁻¹ ⬝ to_respect_mul φ g h ⬝ ap011 mul (p g) (p h))
|
||||
|
||||
definition Group_of_pgroup (G : Type*) [pgroup G] : Group :=
|
||||
Group.mk G _
|
||||
|
||||
definition pgroup_pType_of_Group [instance] (G : Group) : pgroup (pType_of_Group G) :=
|
||||
⦃ pgroup, Group.struct G,
|
||||
pt_mul := one_mul,
|
||||
mul_pt := mul_one,
|
||||
mul_left_inv_pt := mul.left_inv ⦄
|
||||
|
||||
definition comm_group_pType_of_Group [instance] (G : CommGroup) : comm_group (pType_of_Group G) :=
|
||||
CommGroup.struct G
|
||||
|
||||
abbreviation gid [constructor] := @homomorphism_id
|
||||
-- definition is_homomorphism_comm_homomorphism2 [instance] {G G' : AbGroup} (φ : G →g G')
|
||||
-- : @is_homomorphism G G' (@ab_group.to_group _ (AbGroup.struct G)) _ φ :=
|
||||
-- homomorphism.struct φ
|
||||
|
||||
end group open group
|
||||
|
||||
|
||||
namespace pi -- move to types.arrow
|
||||
|
||||
definition pmap_eq_idp {X Y : Type*} (f : X →* Y) :
|
||||
|
@ -110,335 +57,30 @@ end pi open pi
|
|||
|
||||
namespace eq
|
||||
|
||||
-- types.eq
|
||||
definition loop_equiv_eq_closed [constructor] {A : Type} {a a' : A} (p : a = a')
|
||||
: (a = a) ≃ (a' = a') :=
|
||||
eq_equiv_eq_closed p p
|
||||
|
||||
-- init.path
|
||||
definition tr_ap {A B : Type} {x y : A} (P : B → Type) (f : A → B) (p : x = y) (z : P (f x)) :
|
||||
transport P (ap f p) z = transport (P ∘ f) p z :=
|
||||
(tr_compose P f p z)⁻¹
|
||||
|
||||
|
||||
definition pathover_eq_Fl' {A B : Type} {f : A → B} {a₁ a₂ : A} {b : B} (p : a₁ = a₂) (q : f a₂ = b) : (ap f p) ⬝ q =[p] q :=
|
||||
by induction p; induction q; exact idpo
|
||||
|
||||
-- this should be renamed square_pathover. The one in cubical.cube should be renamed
|
||||
definition square_pathover' {A B : Type} {a a' : A} {b₁ b₂ b₃ b₄ : A → B}
|
||||
{f₁ : b₁ ~ b₂} {f₂ : b₃ ~ b₄} {f₃ : b₁ ~ b₃} {f₄ : b₂ ~ b₄} {p : a = a'}
|
||||
{q : square (f₁ a) (f₂ a) (f₃ a) (f₄ a)}
|
||||
{r : square (f₁ a') (f₂ a') (f₃ a') (f₄ a')}
|
||||
(s : cube (natural_square_tr f₁ p) (natural_square_tr f₂ p)
|
||||
(natural_square_tr f₃ p) (natural_square_tr f₄ p) q r) : q =[p] r :=
|
||||
by induction p; apply pathover_idp_of_eq; exact eq_of_deg12_cube s
|
||||
|
||||
-- define natural_square_tr this way. Also, natural_square_tr and natural_square should swap names
|
||||
definition natural_square_tr_eq {A B : Type} {a a' : A} {f g : A → B}
|
||||
(p : f ~ g) (q : a = a') : natural_square_tr p q = square_of_pathover (apd p q) :=
|
||||
by induction q; reflexivity
|
||||
|
||||
section
|
||||
variables {A : Type} {a₀₀₀ a₂₀₀ a₀₂₀ a₂₂₀ a₀₀₂ a₂₀₂ a₀₂₂ a₂₂₂ : A}
|
||||
{p₁₀₀ : a₀₀₀ = a₂₀₀} {p₀₁₀ : a₀₀₀ = a₀₂₀} {p₀₀₁ : a₀₀₀ = a₀₀₂}
|
||||
{p₁₂₀ : a₀₂₀ = a₂₂₀} {p₂₁₀ : a₂₀₀ = a₂₂₀} {p₂₀₁ : a₂₀₀ = a₂₀₂}
|
||||
{p₁₀₂ : a₀₀₂ = a₂₀₂} {p₀₁₂ : a₀₀₂ = a₀₂₂} {p₀₂₁ : a₀₂₀ = a₀₂₂}
|
||||
{p₁₂₂ : a₀₂₂ = a₂₂₂} {p₂₁₂ : a₂₀₂ = a₂₂₂} {p₂₂₁ : a₂₂₀ = a₂₂₂}
|
||||
{s₁₁₀ : square p₀₁₀ p₂₁₀ p₁₀₀ p₁₂₀}
|
||||
{s₁₁₂ : square p₀₁₂ p₂₁₂ p₁₀₂ p₁₂₂}
|
||||
{s₀₁₁ : square p₀₁₀ p₀₁₂ p₀₀₁ p₀₂₁}
|
||||
{s₂₁₁ : square p₂₁₀ p₂₁₂ p₂₀₁ p₂₂₁}
|
||||
{s₁₀₁ : square p₁₀₀ p₁₀₂ p₀₀₁ p₂₀₁}
|
||||
{s₁₂₁ : square p₁₂₀ p₁₂₂ p₀₂₁ p₂₂₁}
|
||||
|
||||
-- move to cubical.cube
|
||||
definition eq_concat1 {s₀₁₁' : square p₀₁₀ p₀₁₂ p₀₀₁ p₀₂₁} (r : s₀₁₁' = s₀₁₁)
|
||||
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) : cube s₀₁₁' s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂ :=
|
||||
by induction r; exact c
|
||||
|
||||
definition concat1_eq {s₂₁₁' : square p₂₁₀ p₂₁₂ p₂₀₁ p₂₂₁}
|
||||
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) (r : s₂₁₁ = s₂₁₁')
|
||||
: cube s₀₁₁ s₂₁₁' s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂ :=
|
||||
by induction r; exact c
|
||||
|
||||
definition eq_concat2 {s₁₀₁' : square p₁₀₀ p₁₀₂ p₀₀₁ p₂₀₁} (r : s₁₀₁' = s₁₀₁)
|
||||
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) : cube s₀₁₁ s₂₁₁ s₁₀₁' s₁₂₁ s₁₁₀ s₁₁₂ :=
|
||||
by induction r; exact c
|
||||
|
||||
definition concat2_eq {s₁₂₁' : square p₁₂₀ p₁₂₂ p₀₂₁ p₂₂₁}
|
||||
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) (r : s₁₂₁ = s₁₂₁')
|
||||
: cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁' s₁₁₀ s₁₁₂ :=
|
||||
by induction r; exact c
|
||||
|
||||
definition eq_concat3 {s₁₁₀' : square p₀₁₀ p₂₁₀ p₁₀₀ p₁₂₀} (r : s₁₁₀' = s₁₁₀)
|
||||
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀' s₁₁₂ :=
|
||||
by induction r; exact c
|
||||
|
||||
definition concat3_eq {s₁₁₂' : square p₀₁₂ p₂₁₂ p₁₀₂ p₁₂₂}
|
||||
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) (r : s₁₁₂ = s₁₁₂')
|
||||
: cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂' :=
|
||||
by induction r; exact c
|
||||
|
||||
end
|
||||
|
||||
infix ` ⬝1 `:75 := cube_concat1
|
||||
infix ` ⬝2 `:75 := cube_concat2
|
||||
infix ` ⬝3 `:75 := cube_concat3
|
||||
infix ` ⬝p1 `:75 := eq_concat1
|
||||
infix ` ⬝1p `:75 := concat1_eq
|
||||
infix ` ⬝p2 `:75 := eq_concat3
|
||||
infix ` ⬝2p `:75 := concat2_eq
|
||||
infix ` ⬝p3 `:75 := eq_concat3
|
||||
infix ` ⬝3p `:75 := concat3_eq
|
||||
-- definition natural_square_tr_eq {A B : Type} {a a' : A} {f g : A → B}
|
||||
-- (p : f ~ g) (q : a = a') : natural_square p q = square_of_pathover (apd p q) :=
|
||||
-- idp
|
||||
|
||||
end eq open eq
|
||||
|
||||
namespace pointed
|
||||
-- in init.pointed `pointed_carrier` should be [unfold 1] instead of [constructor]
|
||||
|
||||
definition ptransport [constructor] {A : Type} (B : A → Type*) {a a' : A} (p : a = a')
|
||||
: B a →* B a' :=
|
||||
pmap.mk (transport B p) (apdt (λa, Point (B a)) p)
|
||||
-- /- the pointed type of (unpointed) dependent maps -/
|
||||
-- definition pupi [constructor] {A : Type} (P : A → Type*) : Type* :=
|
||||
-- pointed.mk' (Πa, P a)
|
||||
|
||||
definition ptransport_change_eq [constructor] {A : Type} (B : A → Type*) {a a' : A} {p q : a = a'}
|
||||
(r : p = q) : ptransport B p ~* ptransport B q :=
|
||||
phomotopy.mk (λb, ap (λp, transport B p b) r) begin induction r, exact !idp_con end
|
||||
-- definition loop_pupi_commute {A : Type} (B : A → Type*) : Ω(pupi B) ≃* pupi (λa, Ω (B a)) :=
|
||||
-- pequiv_of_equiv eq_equiv_homotopy rfl
|
||||
|
||||
definition pnatural_square {A B : Type} (X : B → Type*) {f g : A → B}
|
||||
(h : Πa, X (f a) →* X (g a)) {a a' : A} (p : a = a') :
|
||||
h a' ∘* ptransport X (ap f p) ~* ptransport X (ap g p) ∘* h a :=
|
||||
by induction p; exact !pcompose_pid ⬝* !pid_pcompose⁻¹*
|
||||
|
||||
definition pequiv_ap [constructor] {A : Type} (B : A → Type*) {a a' : A} (p : a = a')
|
||||
: B a ≃* B a' :=
|
||||
pequiv_of_pmap (ptransport B p) !is_equiv_tr
|
||||
|
||||
definition pequiv_compose {A B C : Type*} (g : B ≃* C) (f : A ≃* B) : A ≃* C :=
|
||||
pequiv_of_pmap (g ∘* f) (is_equiv_compose g f)
|
||||
|
||||
infixr ` ∘*ᵉ `:60 := pequiv_compose
|
||||
|
||||
definition pmap.sigma_char [constructor] {A B : Type*} : (A →* B) ≃ Σ(f : A → B), f pt = pt :=
|
||||
begin
|
||||
fapply equiv.MK : intros f,
|
||||
{ exact ⟨to_fun f , resp_pt f⟩ },
|
||||
all_goals cases f with f p,
|
||||
{ exact pmap.mk f p },
|
||||
all_goals reflexivity
|
||||
end
|
||||
|
||||
definition is_trunc_pmap [instance] (n : ℕ₋₂) (A B : Type*) [is_trunc n B] : is_trunc n (A →* B) :=
|
||||
is_trunc_equiv_closed_rev _ !pmap.sigma_char
|
||||
|
||||
definition is_trunc_ppmap [instance] (n : ℕ₋₂) {A B : Type*} [is_trunc n B] :
|
||||
is_trunc n (ppmap A B) :=
|
||||
!is_trunc_pmap
|
||||
|
||||
definition pmap_eq_of_homotopy {A B : Type*} {f g : A →* B} [is_set B] (p : f ~ g) : f = g :=
|
||||
pmap_eq p !is_set.elim
|
||||
|
||||
definition phomotopy.sigma_char [constructor] {A B : Type*} (f g : A →* B) : (f ~* g) ≃ Σ(p : f ~ g), p pt ⬝ resp_pt g = resp_pt f :=
|
||||
begin
|
||||
fapply equiv.MK : intros h,
|
||||
{ exact ⟨h , to_homotopy_pt h⟩ },
|
||||
all_goals cases h with h p,
|
||||
{ exact phomotopy.mk h p },
|
||||
all_goals reflexivity
|
||||
end
|
||||
|
||||
definition pmap_eq_equiv {A B : Type*} (f g : A →* B) : (f = g) ≃ (f ~* g) :=
|
||||
calc (f = g) ≃ pmap.sigma_char f = pmap.sigma_char g
|
||||
: eq_equiv_fn_eq pmap.sigma_char f g
|
||||
... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g), pathover (λh, h pt = pt) (resp_pt f) p (resp_pt g)
|
||||
: sigma_eq_equiv _ _
|
||||
... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g), resp_pt f = ap (λh, h pt) p ⬝ resp_pt g
|
||||
: sigma_equiv_sigma_right (λp, pathover_eq_equiv_Fl p (resp_pt f) (resp_pt g))
|
||||
... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g), resp_pt f = ap10 p pt ⬝ resp_pt g
|
||||
: sigma_equiv_sigma_right (λp, equiv_eq_closed_right _ (whisker_right (ap_eq_apd10 p _) _))
|
||||
... ≃ Σ(p : pmap.to_fun f ~ pmap.to_fun g), resp_pt f = p pt ⬝ resp_pt g
|
||||
: sigma_equiv_sigma_left' eq_equiv_homotopy
|
||||
... ≃ Σ(p : pmap.to_fun f ~ pmap.to_fun g), p pt ⬝ resp_pt g = resp_pt f
|
||||
: sigma_equiv_sigma_right (λp, eq_equiv_eq_symm _ _)
|
||||
... ≃ (f ~* g) : phomotopy.sigma_char f g
|
||||
|
||||
definition loop_pmap_commute (A B : Type*) : Ω(ppmap A B) ≃* (ppmap A (Ω B)) :=
|
||||
pequiv_of_equiv
|
||||
(calc Ω(ppmap A B) /- ≃ (pconst A B = pconst A B) : erfl
|
||||
... -/ ≃ (pconst A B ~* pconst A B) : pmap_eq_equiv _ _
|
||||
... ≃ Σ(p : pconst A B ~ pconst A B), p pt ⬝ rfl = rfl : phomotopy.sigma_char
|
||||
... /- ≃ Σ(f : A → Ω B), f pt = pt : erfl
|
||||
... -/ ≃ (A →* Ω B) : pmap.sigma_char)
|
||||
(by reflexivity)
|
||||
|
||||
-- definition ppcompose_left {A B C : Type*} (g : B →* C) : ppmap A B →* ppmap A C :=
|
||||
-- pmap.mk (pcompose g) (eq_of_phomotopy (phomotopy.mk (λa, resp_pt g) (idp_con _)⁻¹))
|
||||
|
||||
-- definition is_equiv_ppcompose_left [instance] {A B C : Type*} (g : B →* C) [H : is_equiv g] : is_equiv (@ppcompose_left A B C g) :=
|
||||
-- begin
|
||||
-- fapply is_equiv.adjointify,
|
||||
-- { exact (ppcompose_left (pequiv_of_pmap g H)⁻¹ᵉ*) },
|
||||
-- all_goals (intros f; esimp; apply eq_of_phomotopy),
|
||||
-- { exact calc g ∘* ((pequiv_of_pmap g H)⁻¹ᵉ* ∘* f) ~* (g ∘* (pequiv_of_pmap g H)⁻¹ᵉ*) ∘* f : passoc
|
||||
-- ... ~* pid _ ∘* f : pwhisker_right f (pright_inv (pequiv_of_pmap g H))
|
||||
-- ... ~* f : pid_pcompose f },
|
||||
-- { exact calc (pequiv_of_pmap g H)⁻¹ᵉ* ∘* (g ∘* f) ~* ((pequiv_of_pmap g H)⁻¹ᵉ* ∘* g) ∘* f : passoc
|
||||
-- ... ~* pid _ ∘* f : pwhisker_right f (pleft_inv (pequiv_of_pmap g H))
|
||||
-- ... ~* f : pid_pcompose f }
|
||||
-- end
|
||||
|
||||
-- definition pequiv_ppcompose_left {A B C : Type*} (g : B ≃* C) : ppmap A B ≃* ppmap A C :=
|
||||
-- pequiv_of_pmap (ppcompose_left g) _
|
||||
|
||||
-- definition pcompose_pconst {A B C : Type*} (f : B →* C) : f ∘* pconst A B ~* pconst A C :=
|
||||
-- phomotopy.mk (λa, respect_pt f) (idp_con _)⁻¹
|
||||
|
||||
-- definition pconst_pcompose {A B C : Type*} (f : A →* B) : pconst B C ∘* f ~* pconst A C :=
|
||||
-- phomotopy.mk (λa, rfl) (ap_constant _ _)⁻¹
|
||||
|
||||
definition ap1_pconst (A B : Type*) : Ω→(pconst A B) ~* pconst (Ω A) (Ω B) :=
|
||||
phomotopy.mk (λp, idp_con _ ⬝ ap_constant p pt) rfl
|
||||
|
||||
definition apn_pconst (A B : Type*) (n : ℕ) :
|
||||
apn n (pconst A B) ~* pconst (Ω[n] A) (Ω[n] B) :=
|
||||
begin
|
||||
induction n with n IH,
|
||||
{ reflexivity },
|
||||
{ exact ap1_phomotopy IH ⬝* !ap1_pconst }
|
||||
end
|
||||
|
||||
definition loop_ppi_commute {A : Type} (B : A → Type*) : Ω(ppi B) ≃* Π*a, Ω (B a) :=
|
||||
pequiv_of_equiv eq_equiv_homotopy rfl
|
||||
|
||||
definition equiv_ppi_right {A : Type} {P Q : A → Type*} (g : Πa, P a ≃* Q a)
|
||||
: (Π*a, P a) ≃* (Π*a, Q a) :=
|
||||
pequiv_of_equiv (pi_equiv_pi_right g)
|
||||
begin esimp, apply eq_of_homotopy, intros a, esimp, exact (respect_pt (g a)) end
|
||||
|
||||
definition pcast_commute [constructor] {A : Type} {B C : A → Type*} (f : Πa, B a →* C a)
|
||||
{a₁ a₂ : A} (p : a₁ = a₂) : pcast (ap C p) ∘* f a₁ ~* f a₂ ∘* pcast (ap B p) :=
|
||||
phomotopy.mk
|
||||
begin induction p, reflexivity end
|
||||
begin induction p, esimp, refine !idp_con ⬝ !idp_con ⬝ !ap_id⁻¹ end
|
||||
|
||||
definition pequiv_of_eq_commute [constructor] {A : Type} {B C : A → Type*} (f : Πa, B a →* C a)
|
||||
{a₁ a₂ : A} (p : a₁ = a₂) : pequiv_of_eq (ap C p) ∘* f a₁ ~* f a₂ ∘* pequiv_of_eq (ap B p) :=
|
||||
pcast_commute f p
|
||||
|
||||
definition papply [constructor] {A : Type*} (B : Type*) (a : A) : ppmap A B →* B :=
|
||||
pmap.mk (λ(f : A →* B), f a) idp
|
||||
|
||||
definition papply_pcompose [constructor] {A : Type*} (B : Type*) (a : A) : ppmap A B →* B :=
|
||||
pmap.mk (λ(f : A →* B), f a) idp
|
||||
|
||||
open bool --also rename pmap_bool_equiv -> pmap_pbool_equiv
|
||||
|
||||
definition pbool_pmap [constructor] {A : Type*} (a : A) : pbool →* A :=
|
||||
pmap.mk (bool.rec pt a) idp
|
||||
|
||||
definition pmap_pbool_pequiv [constructor] (B : Type*) : ppmap pbool B ≃* B :=
|
||||
begin
|
||||
fapply pequiv.MK,
|
||||
{ exact papply B tt },
|
||||
{ exact pbool_pmap },
|
||||
{ intro f, fapply pmap_eq,
|
||||
{ intro b, cases b, exact !respect_pt⁻¹, reflexivity },
|
||||
{ exact !con.left_inv⁻¹ }},
|
||||
{ intro b, reflexivity },
|
||||
end
|
||||
|
||||
definition papn_pt [constructor] (n : ℕ) (A B : Type*) : ppmap A B →* ppmap (Ω[n] A) (Ω[n] B) :=
|
||||
pmap.mk (λf, apn n f) (eq_of_phomotopy !apn_pconst)
|
||||
|
||||
definition papn_fun [constructor] {n : ℕ} {A : Type*} (B : Type*) (p : Ω[n] A) :
|
||||
ppmap A B →* Ω[n] B :=
|
||||
papply _ p ∘* papn_pt n A B
|
||||
|
||||
definition loopn_succ_in_natural {A B : Type*} (n : ℕ) (f : A →* B) :
|
||||
loopn_succ_in B n ∘* Ω→[n+1] f ~* Ω→[n] (Ω→ f) ∘* loopn_succ_in A n :=
|
||||
!apn_succ_phomotopy_in
|
||||
|
||||
definition loopn_succ_in_inv_natural {A B : Type*} (n : ℕ) (f : A →* B) :
|
||||
Ω→[n + 1] f ∘* (loopn_succ_in A n)⁻¹ᵉ* ~* (loopn_succ_in B n)⁻¹ᵉ* ∘* Ω→[n] (Ω→ f):=
|
||||
begin
|
||||
apply pinv_right_phomotopy_of_phomotopy,
|
||||
refine _ ⬝* !passoc⁻¹*,
|
||||
apply phomotopy_pinv_left_of_phomotopy,
|
||||
apply apn_succ_phomotopy_in
|
||||
end
|
||||
-- definition equiv_pupi_right {A : Type} {P Q : A → Type*} (g : Πa, P a ≃* Q a)
|
||||
-- : pupi P ≃* pupi Q :=
|
||||
-- pequiv_of_equiv (pi_equiv_pi_right g)
|
||||
-- begin esimp, apply eq_of_homotopy, intros a, esimp, exact (respect_pt (g a)) end
|
||||
|
||||
end pointed open pointed
|
||||
|
||||
namespace fiber
|
||||
|
||||
definition pfiber.sigma_char [constructor] {A B : Type*} (f : A →* B)
|
||||
: pfiber f ≃* pointed.MK (Σa, f a = pt) ⟨pt, respect_pt f⟩ :=
|
||||
pequiv_of_equiv (fiber.sigma_char f pt) idp
|
||||
|
||||
definition ppoint_sigma_char [constructor] {A B : Type*} (f : A →* B)
|
||||
: ppoint f ~* pmap.mk pr1 idp ∘* pfiber.sigma_char f :=
|
||||
!phomotopy.refl
|
||||
|
||||
definition pfiber_loop_space {A B : Type*} (f : A →* B) : pfiber (Ω→ f) ≃* Ω (pfiber f) :=
|
||||
pequiv_of_equiv
|
||||
(calc pfiber (Ω→ f) ≃ Σ(p : Point A = Point A), ap1 f p = rfl
|
||||
: (fiber.sigma_char (ap1 f) (Point (Ω B)))
|
||||
... ≃ Σ(p : Point A = Point A), (respect_pt f) = ap f p ⬝ (respect_pt f)
|
||||
: (sigma_equiv_sigma_right (λp,
|
||||
calc (ap1 f p = rfl) ≃ !respect_pt⁻¹ ⬝ (ap f p ⬝ !respect_pt) = rfl
|
||||
: equiv_eq_closed_left _ (con.assoc _ _ _)
|
||||
... ≃ ap f p ⬝ (respect_pt f) = (respect_pt f)
|
||||
: eq_equiv_inv_con_eq_idp
|
||||
... ≃ (respect_pt f) = ap f p ⬝ (respect_pt f)
|
||||
: eq_equiv_eq_symm))
|
||||
... ≃ fiber.mk (Point A) (respect_pt f) = fiber.mk pt (respect_pt f)
|
||||
: fiber_eq_equiv
|
||||
... ≃ Ω (pfiber f)
|
||||
: erfl)
|
||||
(begin cases f with f p, cases A with A a, cases B with B b, esimp at p, esimp at f,
|
||||
induction p, reflexivity end)
|
||||
|
||||
definition pfiber_equiv_of_phomotopy {A B : Type*} {f g : A →* B} (h : f ~* g)
|
||||
: pfiber f ≃* pfiber g :=
|
||||
begin
|
||||
fapply pequiv_of_equiv,
|
||||
{ refine (fiber.sigma_char f pt ⬝e _ ⬝e (fiber.sigma_char g pt)⁻¹ᵉ),
|
||||
apply sigma_equiv_sigma_right, intros a,
|
||||
apply equiv_eq_closed_left, apply (to_homotopy h) },
|
||||
{ refine (fiber_eq rfl _),
|
||||
change (h pt)⁻¹ ⬝ respect_pt f = idp ⬝ respect_pt g,
|
||||
rewrite idp_con, apply inv_con_eq_of_eq_con, symmetry, exact (to_homotopy_pt h) }
|
||||
end
|
||||
|
||||
definition transport_fiber_equiv [constructor] {A B : Type} (f : A → B) {b1 b2 : B} (p : b1 = b2)
|
||||
: fiber f b1 ≃ fiber f b2 :=
|
||||
calc fiber f b1 ≃ Σa, f a = b1 : fiber.sigma_char
|
||||
... ≃ Σa, f a = b2 : sigma_equiv_sigma_right (λa, equiv_eq_closed_right (f a) p)
|
||||
... ≃ fiber f b2 : fiber.sigma_char
|
||||
|
||||
definition pequiv_postcompose {A B B' : Type*} (f : A →* B) (g : B ≃* B')
|
||||
: pfiber (g ∘* f) ≃* pfiber f :=
|
||||
begin
|
||||
fapply pequiv_of_equiv, esimp,
|
||||
refine transport_fiber_equiv (g ∘* f) (respect_pt g)⁻¹ ⬝e fiber.equiv_postcompose f g (Point B),
|
||||
esimp, apply (ap (fiber.mk (Point A))), refine !con.assoc ⬝ _, apply inv_con_eq_of_eq_con,
|
||||
rewrite [con.assoc, con.right_inv, con_idp, -ap_compose'], apply ap_con_eq_con
|
||||
end
|
||||
|
||||
definition pequiv_precompose {A A' B : Type*} (f : A →* B) (g : A' ≃* A)
|
||||
: pfiber (f ∘* g) ≃* pfiber f :=
|
||||
begin
|
||||
fapply pequiv_of_equiv, esimp,
|
||||
refine fiber.equiv_precompose f g (Point B),
|
||||
esimp, apply (eq_of_fn_eq_fn (fiber.sigma_char _ _)), fapply sigma_eq: esimp,
|
||||
{ apply respect_pt g },
|
||||
{ apply pathover_eq_Fl' }
|
||||
end
|
||||
|
||||
definition pfiber_equiv_of_square {A B C D : Type*} {f : A →* B} {g : C →* D} (h : A ≃* C)
|
||||
(k : B ≃* D) (s : k ∘* f ~* g ∘* h) : pfiber f ≃* pfiber g :=
|
||||
calc pfiber f ≃* pfiber (k ∘* f) : pequiv_postcompose
|
||||
... ≃* pfiber (g ∘* h) : pfiber_equiv_of_phomotopy s
|
||||
... ≃* pfiber g : pequiv_precompose
|
||||
|
||||
definition ap1_ppoint_phomotopy {A B : Type*} (f : A →* B)
|
||||
: Ω→ (ppoint f) ∘* pfiber_loop_space f ~* ppoint (Ω→ f) :=
|
||||
|
@ -453,125 +95,6 @@ namespace fiber
|
|||
|
||||
end fiber
|
||||
|
||||
namespace eq --algebra.homotopy_group
|
||||
|
||||
definition phomotopy_group_functor_pid (n : ℕ) (A : Type*) : π→[n] (pid A) ~* pid (π[n] A) :=
|
||||
ptrunc_functor_phomotopy 0 !apn_pid ⬝* !ptrunc_functor_pid
|
||||
|
||||
end eq
|
||||
|
||||
namespace susp
|
||||
|
||||
definition iterate_psusp_functor (n : ℕ) {A B : Type*} (f : A →* B) :
|
||||
iterate_psusp n A →* iterate_psusp n B :=
|
||||
begin
|
||||
induction n with n g,
|
||||
{ exact f },
|
||||
{ exact psusp_functor g }
|
||||
end
|
||||
|
||||
end susp
|
||||
|
||||
namespace is_conn -- homotopy.connectedness
|
||||
|
||||
structure conntype (n : ℕ₋₂) : Type :=
|
||||
(carrier : Type)
|
||||
(struct : is_conn n carrier)
|
||||
|
||||
notation `Type[`:95 n:0 `]`:0 := conntype n
|
||||
|
||||
attribute conntype.carrier [coercion]
|
||||
attribute conntype.struct [instance] [priority 1300]
|
||||
|
||||
section
|
||||
universe variable u
|
||||
structure pconntype (n : ℕ₋₂) extends conntype.{u} n, pType.{u}
|
||||
|
||||
notation `Type*[`:95 n:0 `]`:0 := pconntype n
|
||||
|
||||
/-
|
||||
There are multiple coercions from pconntype to Type. Type class inference doesn't recognize
|
||||
that all of them are definitionally equal (for performance reasons). One instance is
|
||||
automatically generated, and we manually add the missing instances.
|
||||
-/
|
||||
|
||||
definition is_conn_pconntype [instance] {n : ℕ₋₂} (X : Type*[n]) : is_conn n X :=
|
||||
conntype.struct X
|
||||
|
||||
/- Now all the instances work -/
|
||||
example {n : ℕ₋₂} (X : Type*[n]) : is_conn n X := _
|
||||
example {n : ℕ₋₂} (X : Type*[n]) : is_conn n (pconntype.to_pType X) := _
|
||||
example {n : ℕ₋₂} (X : Type*[n]) : is_conn n (pconntype.to_conntype X) := _
|
||||
example {n : ℕ₋₂} (X : Type*[n]) : is_conn n (pconntype._trans_of_to_pType X) := _
|
||||
example {n : ℕ₋₂} (X : Type*[n]) : is_conn n (pconntype._trans_of_to_conntype X) := _
|
||||
|
||||
structure truncconntype (n k : ℕ₋₂) extends trunctype.{u} n,
|
||||
conntype.{u} k renaming struct→conn_struct
|
||||
|
||||
notation n `-Type[`:95 k:0 `]`:0 := truncconntype n k
|
||||
|
||||
definition is_conn_truncconntype [instance] {n k : ℕ₋₂} (X : n-Type[k]) :
|
||||
is_conn k (truncconntype._trans_of_to_trunctype X) :=
|
||||
conntype.struct X
|
||||
|
||||
definition is_trunc_truncconntype [instance] {n k : ℕ₋₂} (X : n-Type[k]) : is_trunc n X :=
|
||||
trunctype.struct X
|
||||
|
||||
structure ptruncconntype (n k : ℕ₋₂) extends ptrunctype.{u} n,
|
||||
pconntype.{u} k renaming struct→conn_struct
|
||||
|
||||
notation n `-Type*[`:95 k:0 `]`:0 := ptruncconntype n k
|
||||
|
||||
attribute ptruncconntype._trans_of_to_pconntype ptruncconntype._trans_of_to_ptrunctype
|
||||
ptruncconntype._trans_of_to_pconntype_1 ptruncconntype._trans_of_to_ptrunctype_1
|
||||
ptruncconntype._trans_of_to_pconntype_2 ptruncconntype._trans_of_to_ptrunctype_2
|
||||
ptruncconntype.to_pconntype ptruncconntype.to_ptrunctype
|
||||
truncconntype._trans_of_to_conntype truncconntype._trans_of_to_trunctype
|
||||
truncconntype.to_conntype truncconntype.to_trunctype [unfold 3]
|
||||
attribute pconntype._trans_of_to_conntype pconntype._trans_of_to_pType
|
||||
pconntype.to_pType pconntype.to_conntype [unfold 2]
|
||||
|
||||
definition is_conn_ptruncconntype [instance] {n k : ℕ₋₂} (X : n-Type*[k]) :
|
||||
is_conn k (ptruncconntype._trans_of_to_ptrunctype X) :=
|
||||
conntype.struct X
|
||||
|
||||
definition is_trunc_ptruncconntype [instance] {n k : ℕ₋₂} (X : n-Type*[k]) :
|
||||
is_trunc n (ptruncconntype._trans_of_to_pconntype X) :=
|
||||
trunctype.struct X
|
||||
|
||||
definition ptruncconntype_eq {n k : ℕ₋₂} {X Y : n-Type*[k]} (p : X ≃* Y) : X = Y :=
|
||||
begin
|
||||
induction X with X Xt Xp Xc, induction Y with Y Yt Yp Yc,
|
||||
note q := pType_eq_elim (eq_of_pequiv p),
|
||||
cases q with r s, esimp at *, induction r,
|
||||
exact ap0111 (ptruncconntype.mk X) !is_prop.elim (eq_of_pathover_idp s) !is_prop.elim
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
|
||||
end is_conn
|
||||
|
||||
namespace succ_str
|
||||
variables {N : succ_str}
|
||||
|
||||
protected definition add [reducible] (n : N) (k : ℕ) : N :=
|
||||
iterate S k n
|
||||
|
||||
infix ` +' `:65 := succ_str.add
|
||||
|
||||
definition add_succ (n : N) (k : ℕ) : n +' (k + 1) = (S n) +' k :=
|
||||
by induction k with k p; reflexivity; exact ap S p
|
||||
|
||||
|
||||
end succ_str
|
||||
|
||||
namespace join
|
||||
|
||||
definition pjoin [constructor] (A B : Type*) : Type* := pointed.MK (join A B) (inl pt)
|
||||
|
||||
end join
|
||||
|
||||
namespace circle
|
||||
|
||||
|
||||
|
@ -582,11 +105,11 @@ namespace circle
|
|||
to the square which defined H on the path constructor
|
||||
-/
|
||||
|
||||
definition natural_square_tr_elim_loop {A : Type} {f g : S¹ → A} (p : f base = g base)
|
||||
definition natural_square_elim_loop {A : Type} {f g : S¹ → A} (p : f base = g base)
|
||||
(q : square p p (ap f loop) (ap g loop))
|
||||
: natural_square_tr (circle.rec p (eq_pathover q)) loop = q :=
|
||||
: natural_square (circle.rec p (eq_pathover q)) loop = q :=
|
||||
begin
|
||||
refine !natural_square_tr_eq ⬝ _,
|
||||
-- refine !natural_square_eq ⬝ _,
|
||||
refine ap square_of_pathover !rec_loop ⬝ _,
|
||||
exact to_right_inv !eq_pathover_equiv_square q
|
||||
end
|
||||
|
@ -594,162 +117,8 @@ namespace circle
|
|||
|
||||
end circle
|
||||
|
||||
-- this should replace various definitions in homotopy.susp, lines 241 - 338
|
||||
namespace new_susp
|
||||
|
||||
variables {X Y Z : Type*}
|
||||
|
||||
definition loop_psusp_unit [constructor] (X : Type*) : X →* Ω(psusp X) :=
|
||||
begin
|
||||
fconstructor,
|
||||
{ intro x, exact merid x ⬝ (merid pt)⁻¹ },
|
||||
{ apply con.right_inv },
|
||||
end
|
||||
|
||||
definition loop_psusp_unit_natural (f : X →* Y)
|
||||
: loop_psusp_unit Y ∘* f ~* ap1 (psusp_functor f) ∘* loop_psusp_unit X :=
|
||||
begin
|
||||
induction X with X x, induction Y with Y y, induction f with f pf, esimp at *, induction pf,
|
||||
fconstructor,
|
||||
{ intro x', esimp [psusp_functor], symmetry,
|
||||
exact
|
||||
!idp_con ⬝
|
||||
(!ap_con ⬝
|
||||
whisker_left _ !ap_inv) ⬝
|
||||
(!elim_merid ◾ (inverse2 !elim_merid)) },
|
||||
{ rewrite [▸*,idp_con (con.right_inv _)],
|
||||
apply inv_con_eq_of_eq_con,
|
||||
refine _ ⬝ !con.assoc',
|
||||
rewrite inverse2_right_inv,
|
||||
refine _ ⬝ !con.assoc',
|
||||
rewrite [ap_con_right_inv],
|
||||
xrewrite [idp_con_idp, -ap_compose (concat idp)] },
|
||||
end
|
||||
|
||||
definition loop_psusp_counit [constructor] (X : Type*) : psusp (Ω X) →* X :=
|
||||
begin
|
||||
fconstructor,
|
||||
{ intro x, induction x, exact pt, exact pt, exact a },
|
||||
{ reflexivity },
|
||||
end
|
||||
|
||||
definition loop_psusp_counit_natural (f : X →* Y)
|
||||
: f ∘* loop_psusp_counit X ~* loop_psusp_counit Y ∘* (psusp_functor (ap1 f)) :=
|
||||
begin
|
||||
induction X with X x, induction Y with Y y, induction f with f pf, esimp at *, induction pf,
|
||||
fconstructor,
|
||||
{ intro x', induction x' with p,
|
||||
{ reflexivity },
|
||||
{ reflexivity },
|
||||
{ esimp, apply eq_pathover, apply hdeg_square,
|
||||
xrewrite [ap_compose' f, ap_compose' (susp.elim (f x) (f x) (λ (a : f x = f x), a)),▸*],
|
||||
xrewrite [+elim_merid,▸*,idp_con] }},
|
||||
{ reflexivity }
|
||||
end
|
||||
|
||||
definition loop_psusp_counit_unit (X : Type*)
|
||||
: ap1 (loop_psusp_counit X) ∘* loop_psusp_unit (Ω X) ~* pid (Ω X) :=
|
||||
begin
|
||||
induction X with X x, fconstructor,
|
||||
{ intro p, esimp,
|
||||
refine !idp_con ⬝
|
||||
(!ap_con ⬝
|
||||
whisker_left _ !ap_inv) ⬝
|
||||
(!elim_merid ◾ inverse2 !elim_merid) },
|
||||
{ rewrite [▸*,inverse2_right_inv (elim_merid id idp)],
|
||||
refine !con.assoc ⬝ _,
|
||||
xrewrite [ap_con_right_inv (susp.elim x x (λa, a)) (merid idp),idp_con_idp,-ap_compose] }
|
||||
end
|
||||
|
||||
definition loop_psusp_unit_counit (X : Type*)
|
||||
: loop_psusp_counit (psusp X) ∘* psusp_functor (loop_psusp_unit X) ~* pid (psusp X) :=
|
||||
begin
|
||||
induction X with X x, fconstructor,
|
||||
{ intro x', induction x',
|
||||
{ reflexivity },
|
||||
{ exact merid pt },
|
||||
{ apply eq_pathover,
|
||||
xrewrite [▸*, ap_id, ap_compose' (susp.elim north north (λa, a)), +elim_merid,▸*],
|
||||
apply square_of_eq, exact !idp_con ⬝ !inv_con_cancel_right⁻¹ }},
|
||||
{ reflexivity }
|
||||
end
|
||||
|
||||
-- TODO: rename to psusp_adjoint_loop (also in above lemmas)
|
||||
definition psusp_adjoint_loop_unpointed [constructor] (X Y : Type*) : psusp X →* Y ≃ X →* Ω Y :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ intro f, exact ap1 f ∘* loop_psusp_unit X },
|
||||
{ intro g, exact loop_psusp_counit Y ∘* psusp_functor g },
|
||||
{ intro g, apply eq_of_phomotopy, esimp,
|
||||
refine !pwhisker_right !ap1_pcompose ⬝* _,
|
||||
refine !passoc ⬝* _,
|
||||
refine !pwhisker_left !loop_psusp_unit_natural⁻¹* ⬝* _,
|
||||
refine !passoc⁻¹* ⬝* _,
|
||||
refine !pwhisker_right !loop_psusp_counit_unit ⬝* _,
|
||||
apply pid_pcompose },
|
||||
{ intro f, apply eq_of_phomotopy, esimp,
|
||||
refine !pwhisker_left !psusp_functor_compose ⬝* _,
|
||||
refine !passoc⁻¹* ⬝* _,
|
||||
refine !pwhisker_right !loop_psusp_counit_natural⁻¹* ⬝* _,
|
||||
refine !passoc ⬝* _,
|
||||
refine !pwhisker_left !loop_psusp_unit_counit ⬝* _,
|
||||
apply pcompose_pid },
|
||||
end
|
||||
|
||||
definition psusp_adjoint_loop_pconst (X Y : Type*) :
|
||||
psusp_adjoint_loop_unpointed X Y (pconst (psusp X) Y) ~* pconst X (Ω Y) :=
|
||||
begin
|
||||
refine pwhisker_right _ !ap1_pconst ⬝* _,
|
||||
apply pconst_pcompose
|
||||
end
|
||||
|
||||
definition psusp_adjoint_loop [constructor] (X Y : Type*) : ppmap (psusp X) Y ≃* ppmap X (Ω Y) :=
|
||||
begin
|
||||
apply pequiv_of_equiv (psusp_adjoint_loop_unpointed X Y),
|
||||
apply eq_of_phomotopy,
|
||||
apply psusp_adjoint_loop_pconst
|
||||
end
|
||||
|
||||
end new_susp open new_susp
|
||||
|
||||
-- this should replace corresponding definitions in homotopy.sphere
|
||||
namespace new_sphere
|
||||
|
||||
open sphere sphere.ops
|
||||
|
||||
-- the definition was wrong for n = 0
|
||||
definition new.surf {n : ℕ} : Ω[n] (S* n) :=
|
||||
begin
|
||||
induction n with n s,
|
||||
{ exact south },
|
||||
{ exact (loopn_succ_in (S* (succ n)) n)⁻¹ᵉ* (apn n (equator n) s), }
|
||||
end
|
||||
|
||||
|
||||
definition psphere_pmap_pequiv' (A : Type*) (n : ℕ) : ppmap (S* n) A ≃* Ω[n] A :=
|
||||
begin
|
||||
revert A, induction n with n IH: intro A,
|
||||
{ refine _ ⬝e* !pmap_pbool_pequiv, exact pequiv_ppcompose_right psphere_pequiv_pbool⁻¹ᵉ* },
|
||||
{ refine psusp_adjoint_loop (S* n) A ⬝e* IH (Ω A) ⬝e* !loopn_succ_in⁻¹ᵉ* }
|
||||
end
|
||||
|
||||
definition psphere_pmap_pequiv (A : Type*) (n : ℕ) : ppmap (S* n) A ≃* Ω[n] A :=
|
||||
begin
|
||||
fapply pequiv_change_fun,
|
||||
{ exact psphere_pmap_pequiv' A n },
|
||||
{ exact papn_fun A new.surf },
|
||||
{ revert A, induction n with n IH: intro A,
|
||||
{ reflexivity },
|
||||
{ intro f, refine ap !loopn_succ_in⁻¹ᵉ* (IH (Ω A) _ ⬝ !apn_pcompose _) ⬝ _,
|
||||
exact !loopn_succ_in_inv_natural⁻¹* _ }}
|
||||
end
|
||||
|
||||
end new_sphere
|
||||
|
||||
namespace sphere
|
||||
|
||||
open sphere.ops new_sphere
|
||||
|
||||
-- definition constant_sphere_map_sphere {n m : ℕ} (H : n < m) (f : S* n →* S* m) :
|
||||
-- f ~* pconst (S* n) (S* m) :=
|
||||
-- begin
|
||||
|
@ -761,39 +130,3 @@ namespace sphere
|
|||
-- end
|
||||
|
||||
end sphere
|
||||
|
||||
namespace cofiber
|
||||
|
||||
-- replace with the definition of pcofiber (and remove primes in homotopy.smash)
|
||||
definition pcofiber' [constructor] {A B : Type*} (f : A →* B) : Type* :=
|
||||
pointed.MK (cofiber f) !cofiber.base
|
||||
attribute pcofiber [constructor]
|
||||
-- move ppushout attribute out namespace
|
||||
|
||||
protected definition elim {A : Type} {B : Type} {f : A → B} {P : Type}
|
||||
(Pinl : P) (Pinr : B → P) (Pglue : Π (x : A), Pinl = Pinr (f x)) (y : cofiber f) : P :=
|
||||
begin
|
||||
induction y using pushout.elim with x x x, induction x, exact Pinl, exact Pinr x, exact Pglue x,
|
||||
end
|
||||
|
||||
end cofiber
|
||||
attribute cofiber.rec cofiber.elim [recursor 8] [unfold 8]
|
||||
|
||||
namespace wedge
|
||||
open pushout unit
|
||||
definition wedge (A B : Type*) : Type := ppushout (pconst punit A) (pconst punit B)
|
||||
local attribute wedge [reducible]
|
||||
definition pwedge' (A B : Type*) : Type* := pointed.mk' (wedge A B)
|
||||
|
||||
protected definition rec {A B : Type*} {P : wedge A B → Type} (Pinl : Π(x : A), P (inl x))
|
||||
(Pinr : Π(x : B), P (inr x)) (Pglue : pathover P (Pinl pt) (glue ⋆) (Pinr pt))
|
||||
(y : wedge A B) : P y :=
|
||||
by induction y; apply Pinl; apply Pinr; induction x; exact Pglue
|
||||
|
||||
protected definition elim {A B : Type*} {P : Type} (Pinl : A → P)
|
||||
(Pinr : B → P) (Pglue : Pinl pt = Pinr pt) (y : wedge A B) : P :=
|
||||
by induction y with a b x; exact Pinl a; exact Pinr b; induction x; exact Pglue
|
||||
|
||||
end wedge
|
||||
|
||||
attribute wedge.rec wedge.elim [recursor 7] [unfold 7]
|
||||
|
|
|
@ -13,7 +13,7 @@ open eq pointed equiv sigma
|
|||
of the type of pointed maps, giving the connectivity of
|
||||
the domain and the truncation level of the codomain.
|
||||
This is is_trunc_pmap at the end.
|
||||
|
||||
|
||||
First we define the type of dependent pointed maps
|
||||
as a tool, because these appear in the more general
|
||||
statement is_trunc_ppi (the generality needed for induction).
|
||||
|
@ -24,13 +24,6 @@ open eq pointed equiv sigma
|
|||
|
||||
namespace pointed
|
||||
|
||||
-- needs another name! (one more p?)
|
||||
structure ppi (A : Type*) (P : A → Type*) :=
|
||||
(to_fun : Π a : A, P a)
|
||||
(resp_pt : to_fun (Point A) = Point (P (Point A)))
|
||||
|
||||
attribute ppi.to_fun [coercion]
|
||||
|
||||
abbreviation ppi_resp_pt [unfold 3] := @ppi.resp_pt
|
||||
|
||||
definition pointed_ppi [instance] [constructor] {A : Type*}
|
||||
|
@ -79,7 +72,7 @@ namespace pointed
|
|||
esimp at *,
|
||||
fapply apd011 ppi.mk,
|
||||
{ apply eq_of_homotopy h },
|
||||
{ esimp, apply concato_eq, apply pathover_eq_Fl, apply inv_con_eq_of_eq_con,
|
||||
{ esimp, apply concato_eq, apply eq_pathover_Fl, apply inv_con_eq_of_eq_con,
|
||||
rewrite [ap_eq_apd10, apd10_eq_of_homotopy], exact r }
|
||||
end
|
||||
|
||||
|
@ -105,11 +98,11 @@ namespace pointed
|
|||
... ≃ Σ(p : ppi.to_fun f = ppi.to_fun g),
|
||||
ppi_resp_pt f = ap (λh, h pt) p ⬝ ppi_resp_pt g
|
||||
: sigma_equiv_sigma_right
|
||||
(λp, pathover_eq_equiv_Fl p (ppi_resp_pt f) (ppi_resp_pt g))
|
||||
(λp, eq_pathover_equiv_Fl p (ppi_resp_pt f) (ppi_resp_pt g))
|
||||
... ≃ Σ(p : ppi.to_fun f = ppi.to_fun g),
|
||||
ppi_resp_pt f = apd10 p pt ⬝ ppi_resp_pt g
|
||||
: sigma_equiv_sigma_right
|
||||
(λp, equiv_eq_closed_right _ (whisker_right (ap_eq_apd10 p _) _))
|
||||
(λp, equiv_eq_closed_right _ (whisker_right _ (ap_eq_apd10 p _)))
|
||||
... ≃ Σ(p : f ~ g), ppi_resp_pt f = p pt ⬝ ppi_resp_pt g
|
||||
: sigma_equiv_sigma_left' eq_equiv_homotopy
|
||||
... ≃ Σ(p : f ~ g), p pt ⬝ ppi_resp_pt g = ppi_resp_pt f
|
||||
|
|
Loading…
Reference in a new issue