diff --git a/Notes/smash.tex b/Notes/smash.tex index 6986787..ec01b0b 100644 --- a/Notes/smash.tex +++ b/Notes/smash.tex @@ -215,6 +215,8 @@ f'\smash 0\arrow[dl,equals] \\ If $x$ varies over $\gluel_a$ the proof is very similar. Only in the end we need to fill the following cube instead (TODO). + To show that this homotopy is pointed, (TODO) + \end{proof} \begin{thm}\label{thm:smash-functor-right} @@ -357,6 +359,13 @@ $$(A\pmap B\pmap C)\lpmap{({-})\smash B}(A\smash B\pmap (B\pmap C)\smash B)\lpma $$\inv{e}_{A,B,C}:(A\smash B\pmap C)\lpmap{B\pmap({-})}((B\pmap A\smash B)\pmap (B\pmap C))\lpmap{\eta\pmap(B\pmap C)}(A\pmap B\pmap C).$$ It is easy to show that $e$ and $\inv{e}$ are inverses as unpointed maps from the unit-counit laws and naturality of $\eta$ and $\epsilon$. + +% For $f : A\pmap B\pmap C$ we have +% \begin{align*} +% \inv{e}(e(f))&\equiv(\eta\pmap(B\pmap C))\o (B\pmap((A\smash B\pmap\epsilon)\of\smash B))\\ +% &= (\eta\pmap(B\pmap C))\o (B\pmap(A\smash B\pmap\epsilon))\o(B\pmapf\smash B)\\ +% % &= (\eta\pmap(B\pmap C))\o (B\pmap(A\smash B\pmap\epsilon))\o(B\pmapf\smash B)\\ +% \end{align*} \end{proof} \begin{lem}\label{e-natural} $e$ is natural in $A$, $B$ and $C$.