Add dirsum_functor_isomorphism.
This commit is contained in:
parent
8362498b56
commit
c0ea92a0b5
1 changed files with 28 additions and 2 deletions
|
@ -1,7 +1,7 @@
|
||||||
/-
|
/-
|
||||||
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
Copyright (c) 2015 Floris van Doorn, Egbert Rijke, Favonia. All rights reserved.
|
||||||
Released under Apache 2.0 license as described in the file LICENSE.
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
Authors: Floris van Doorn, Egbert Rijke
|
Authors: Floris van Doorn, Egbert Rijke, Favonia
|
||||||
|
|
||||||
Constructions with groups
|
Constructions with groups
|
||||||
-/
|
-/
|
||||||
|
@ -156,4 +156,30 @@ namespace group
|
||||||
definition dirsum_functor_left [constructor] (f : J → I) : dirsum (Y ∘ f) →g dirsum Y :=
|
definition dirsum_functor_left [constructor] (f : J → I) : dirsum (Y ∘ f) →g dirsum Y :=
|
||||||
dirsum_elim (λj, dirsum_incl Y (f j))
|
dirsum_elim (λj, dirsum_incl Y (f j))
|
||||||
|
|
||||||
|
definition dirsum_functor_isomorphism [constructor] (f : Πi, Y i ≃g Y' i) : dirsum Y ≃g dirsum Y' :=
|
||||||
|
let to_hom := dirsum_functor (λ i, f i) in
|
||||||
|
let from_hom := dirsum_functor (λ i, (f i)⁻¹ᵍ) in
|
||||||
|
begin
|
||||||
|
fapply isomorphism.mk,
|
||||||
|
exact dirsum_functor (λ i, f i),
|
||||||
|
fapply is_equiv.adjointify,
|
||||||
|
exact dirsum_functor (λ i, (f i)⁻¹ᵍ),
|
||||||
|
{ intro ds,
|
||||||
|
refine (homomorphism_comp_compute (dirsum_functor (λ i, f i)) (dirsum_functor (λ i, (f i)⁻¹ᵍ)) _)⁻¹ ⬝ _,
|
||||||
|
refine dirsum_functor_compose (λ i, f i) (λ i, (f i)⁻¹ᵍ) ds ⬝ _,
|
||||||
|
refine @dirsum_functor_homotopy I Y' Y' _ (λ i, !gid) (λ i, to_right_inv (equiv_of_isomorphism (f i))) ds ⬝ _,
|
||||||
|
exact !dirsum_functor_gid
|
||||||
|
},
|
||||||
|
{ intro ds,
|
||||||
|
refine (homomorphism_comp_compute (dirsum_functor (λ i, (f i)⁻¹ᵍ)) (dirsum_functor (λ i, f i)) _)⁻¹ ⬝ _,
|
||||||
|
refine dirsum_functor_compose (λ i, (f i)⁻¹ᵍ) (λ i, f i) ds ⬝ _,
|
||||||
|
refine @dirsum_functor_homotopy I Y Y _ (λ i, !gid) (λ i x,
|
||||||
|
proof
|
||||||
|
to_left_inv (equiv_of_isomorphism (f i)) x
|
||||||
|
qed
|
||||||
|
) ds ⬝ _,
|
||||||
|
exact !dirsum_functor_gid
|
||||||
|
}
|
||||||
|
end
|
||||||
|
|
||||||
end group
|
end group
|
||||||
|
|
Loading…
Add table
Reference in a new issue