From c1038a3f967f8b26eebb3cf1b651794c783dfffc Mon Sep 17 00:00:00 2001 From: Floris van Doorn Date: Thu, 31 Mar 2016 13:22:45 -0400 Subject: [PATCH] give the definition of the I-ary direct sum --- group_theory/constructions.hlean | 56 ++++++++++++++++++++++++++++++-- 1 file changed, 53 insertions(+), 3 deletions(-) diff --git a/group_theory/constructions.hlean b/group_theory/constructions.hlean index 2867b8a..2f679b1 100644 --- a/group_theory/constructions.hlean +++ b/group_theory/constructions.hlean @@ -36,6 +36,12 @@ namespace group theorem is_normal_subgroup' (h : G) (r : N g) : N (h⁻¹ * g * h) := inv_inv h ▸ is_normal_subgroup N h⁻¹ r + definition normal_subgroup_rel_comm.{u} (R : subgroup_rel.{_ u} A) : normal_subgroup_rel.{_ u} A := + ⦃normal_subgroup_rel, R, + is_normal := abstract begin + intros g h r, xrewrite [mul.comm h g, mul_inv_cancel_right], exact r + end end⦄ + theorem is_normal_subgroup_rev (h : G) (r : N (h * g * h⁻¹)) : N g := have H : h⁻¹ * (h * g * h⁻¹) * h = g, from calc h⁻¹ * (h * g * h⁻¹) * h = h⁻¹ * (h * g) * h⁻¹ * h : by rewrite [-mul.assoc h⁻¹] @@ -212,9 +218,9 @@ namespace group : comm_group (qg N) := ⦃comm_group, group_qg N, mul_comm := quotient_mul_comm⦄ - definition quotient_comm_group [constructor] {G : CommGroup} (N : normal_subgroup_rel G) + definition quotient_comm_group [constructor] {G : CommGroup} (N : subgroup_rel G) : CommGroup := - CommGroup.mk _ (comm_group_qg N) + CommGroup.mk _ (comm_group_qg (normal_subgroup_rel_comm N)) /- Binary products (direct sums) of Groups -/ definition product_one [constructor] : G × G' := (one, one) @@ -596,7 +602,51 @@ namespace group exact !to_respect_inv⁻¹}} end - /- Free Commutative Group of a set -/ + /- set generating normal subgroup -/ + + section + + parameters {GG : CommGroup} (S : GG → Prop) + + inductive generating_relation' : GG → Type := + | rincl : Π{g}, S g → generating_relation' g + | rmul : Π{g h}, generating_relation' g → generating_relation' h → generating_relation' (g * h) + | rinv : Π{g}, generating_relation' g → generating_relation' g⁻¹ + | rone : generating_relation' 1 + open generating_relation' + definition generating_relation (g : GG) : Prop := ∥ generating_relation' g ∥ + local abbreviation R := generating_relation + definition gr_one : R 1 := tr (rone S) + definition gr_inv (g : GG) : R g → R g⁻¹ := + trunc_functor -1 rinv + definition gr_mul (g h : GG) : R g → R h → R (g * h) := + trunc_functor2 rmul + + definition normal_generating_relation : subgroup_rel GG := + ⦃ subgroup_rel, + R := generating_relation, + Rone := gr_one, + Rinv := gr_inv, + Rmul := gr_mul⦄ + + parameter (GG) + definition quotient_comm_group_gen : CommGroup := quotient_comm_group normal_generating_relation + + end + + section + + parameters {I : Set} (Y : I → CommGroup) + + definition dirsum_carrier : CommGroup := free_comm_group (trunctype.mk (Σi, Y i) _) + local abbreviation ι := @free_comm_group_inclusion + inductive dirsum_rel : dirsum_carrier → Type := + | rmk : Πi y₁ y₂, dirsum_rel (ι ⟨i, y₁⟩ * ι ⟨i, y₂⟩ * (ι ⟨i, y₁ * y₂⟩)⁻¹) + + definition direct_sum : CommGroup := quotient_comm_group_gen dirsum_carrier (λg, ∥dirsum_rel g∥) + end + + /- Tensor group (WIP) -/ /- namespace tensor_group variables {A B}