fixes and additions
add some properties about pointed maps and groups
This commit is contained in:
parent
e4db64ae9a
commit
c3650048f0
9 changed files with 343 additions and 214 deletions
|
@ -28,7 +28,7 @@ is_conn_fun_prod_of_wedge n m A B
|
|||
definition is_trunc_ppi_of_is_conn (k n : ℕ) (X : Type*) (H : is_conn (k.-1) X)
|
||||
(Y : X → Type*) (H3 : Πx, is_trunc (k + n) (Y x)) :
|
||||
is_trunc n (Π*(x : X), Y x) :=
|
||||
is_conn.is_trunc_ppi_of_is_conn _ (k.-2) _ _ (le_of_eq (sub_one_add_plus_two_sub_one k n)⁻¹) _ H3
|
||||
is_conn.is_trunc_ppi_of_is_conn _ (k.-2) H _ _ (le_of_eq (sub_one_add_plus_two_sub_one k n)⁻¹) _ H3
|
||||
|
||||
end hide
|
||||
|
||||
|
@ -396,7 +396,7 @@ end
|
|||
-/
|
||||
|
||||
definition is_trunc_GType_hom (G H : [n;k]GType) : is_trunc n (GType_hom G H) :=
|
||||
is_trunc_pmap_of_is_conn _ (k.-2) _ (k + n) _ (le_of_eq (sub_one_add_plus_two_sub_one k n)⁻¹)
|
||||
is_trunc_pmap_of_is_conn _ (k.-2) _ _ (k + n) _ (le_of_eq (sub_one_add_plus_two_sub_one k n)⁻¹)
|
||||
(is_trunc_B' H)
|
||||
|
||||
definition is_set_GType_hom (G H : [0;k]GType) : is_set (GType_hom G H) :=
|
||||
|
|
|
@ -10,32 +10,6 @@ universe variable u
|
|||
|
||||
namespace EM
|
||||
|
||||
/- move to HoTT-EM, this version doesn't require that X is connected -/
|
||||
definition EM1_map' [unfold 6] {G : Group} {X : Type*} (e : G → Ω X)
|
||||
(r : Πg h, e (g * h) = e g ⬝ e h) [is_trunc 1 X] : EM1 G → X :=
|
||||
begin
|
||||
intro x, induction x using EM.elim,
|
||||
{ exact Point X },
|
||||
{ exact e g },
|
||||
{ exact r g h }
|
||||
end
|
||||
|
||||
definition EM1_pmap' [constructor] {G : Group} {X : Type*} (e : G → Ω X)
|
||||
(r : Πg h, e (g * h) = e g ⬝ e h) [is_trunc 1 X] : EM1 G →* X :=
|
||||
pmap.mk (EM1_map' e r) idp
|
||||
|
||||
definition loop_EM1_pmap' {G : Group} {X : Type*} (e : G →* Ω X)
|
||||
(r : Πg h, e (g * h) = e g ⬝ e h) [is_trunc 1 X] : Ω→(EM1_pmap' e r) ∘* loop_EM1 G ~* e :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ intro g, refine !idp_con ⬝ elim_pth r g },
|
||||
{ apply is_set.elim }
|
||||
end
|
||||
|
||||
definition EMadd1_functor_succ [unfold_full] {G H : AbGroup} (φ : G →g H) (n : ℕ) :
|
||||
EMadd1_functor φ (succ n) ~* ptrunc_functor (n+2) (susp_functor (EMadd1_functor φ n)) :=
|
||||
by reflexivity
|
||||
|
||||
definition EM1_functor_gid (G : Group) : EM1_functor (gid G) ~* !pid :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
|
@ -183,30 +157,27 @@ namespace EM
|
|||
by reflexivity
|
||||
|
||||
definition ap1_EMadd1_natural {G H : AbGroup} (φ : G →g H) (n : ℕ) :
|
||||
Ω→ (EMadd1_functor φ (succ n)) ∘* loop_EMadd1 G n ~* loop_EMadd1 H n ∘* EMadd1_functor φ n :=
|
||||
psquare (loop_EMadd1 G n) (loop_EMadd1 H n)
|
||||
(EMadd1_functor φ n) (Ω→ (EMadd1_functor φ (succ n))) :=
|
||||
begin
|
||||
refine pwhisker_right _ (ap1_phomotopy !EMadd1_functor_succ) ⬝* _,
|
||||
refine _ ⬝hp* Ω⇒ !EMadd1_functor_succ,
|
||||
induction n with n IH,
|
||||
{ refine pwhisker_left _ !hopf.to_pmap_delooping_pinv ⬝* _ ⬝*
|
||||
pwhisker_right _ !hopf.to_pmap_delooping_pinv⁻¹*,
|
||||
refine !loop_susp_unit_natural⁻¹* ⬝h* _,
|
||||
apply ap1_psquare,
|
||||
apply ptr_natural },
|
||||
{ refine pwhisker_left _ !loop_EMadd1_succ ⬝* _ ⬝* pwhisker_right _ !loop_EMadd1_succ⁻¹*,
|
||||
{ refine !hopf.to_pmap_delooping_pinv ⬝pv* _ ⬝vp* !hopf.to_pmap_delooping_pinv,
|
||||
exact !loop_susp_unit_natural ⬝h* ap1_psquare !ptr_natural },
|
||||
{ refine !loop_EMadd1_succ ⬝pv* _ ⬝vp* !loop_EMadd1_succ,
|
||||
refine _ ⬝h* !ap1_ptrunc_functor,
|
||||
refine (@(ptrunc_pequiv_natural (n+1+1) _) _ _)⁻¹ʰ* ⬝h* _,
|
||||
refine pwhisker_left _ !to_pmap_freudenthal_pequiv ⬝* _ ⬝*
|
||||
pwhisker_right _ !to_pmap_freudenthal_pequiv⁻¹*,
|
||||
refine !to_pmap_freudenthal_pequiv ⬝pv* _ ⬝vp* !to_pmap_freudenthal_pequiv,
|
||||
apply ptrunc_functor_psquare,
|
||||
exact !loop_susp_unit_natural⁻¹* }
|
||||
exact !loop_susp_unit_natural }
|
||||
end
|
||||
|
||||
definition apn_EMadd1_pequiv_EM1_natural {G H : AbGroup} (φ : G →g H) (n : ℕ) :
|
||||
Ω→[n] (EMadd1_functor φ n) ∘* loopn_EMadd1_pequiv_EM1 G n ~*
|
||||
loopn_EMadd1_pequiv_EM1 H n ∘* EM1_functor φ :=
|
||||
psquare (loopn_EMadd1_pequiv_EM1 G n) (loopn_EMadd1_pequiv_EM1 H n)
|
||||
(EM1_functor φ) (Ω→[n] (EMadd1_functor φ n)) :=
|
||||
begin
|
||||
induction n with n IH,
|
||||
{ reflexivity },
|
||||
{ exact phomotopy.rfl },
|
||||
{ refine pwhisker_left _ !loopn_EMadd1_pequiv_EM1_succ ⬝* _,
|
||||
refine _ ⬝* pwhisker_right _ !loopn_EMadd1_pequiv_EM1_succ⁻¹*,
|
||||
refine _ ⬝h* !loopn_succ_in_inv_natural,
|
||||
|
@ -214,8 +185,8 @@ namespace EM
|
|||
end
|
||||
|
||||
definition homotopy_group_functor_EMadd1_functor {G H : AbGroup} (φ : G →g H) (n : ℕ) :
|
||||
π→g[n+1] (EMadd1_functor φ n) ∘ ghomotopy_group_EMadd1' G n ~
|
||||
ghomotopy_group_EMadd1' H n ∘ φ :=
|
||||
hsquare (ghomotopy_group_EMadd1' G n) (ghomotopy_group_EMadd1' H n)
|
||||
φ (π→g[n+1] (EMadd1_functor φ n)) :=
|
||||
begin
|
||||
refine hwhisker_left _ (to_fun_isomorphism_trans _ _) ⬝hty _ ⬝hty
|
||||
hwhisker_right _ (to_fun_isomorphism_trans _ _)⁻¹ʰᵗʸ,
|
||||
|
@ -224,14 +195,13 @@ namespace EM
|
|||
end
|
||||
|
||||
definition homotopy_group_functor_EMadd1_functor' {G H : AbGroup} (φ : G →g H) (n : ℕ) :
|
||||
φ ∘ (ghomotopy_group_EMadd1' G n)⁻¹ᵍ ~
|
||||
(ghomotopy_group_EMadd1' H n)⁻¹ᵍ ∘ π→g[n+1] (EMadd1_functor φ n) :=
|
||||
hsquare (ghomotopy_group_EMadd1' G n)⁻¹ᵍ (ghomotopy_group_EMadd1' H n)⁻¹ᵍ
|
||||
(π→g[n+1] (EMadd1_functor φ n)) φ :=
|
||||
(homotopy_group_functor_EMadd1_functor φ n)⁻¹ʰᵗʸʰ
|
||||
|
||||
definition EM1_pmap_natural {G H : Group} {X Y : Type*} (f : X →* Y) (eX : G → Ω X)
|
||||
(eY : H → Ω Y) (rX : Πg h, eX (g * h) = eX g ⬝ eX h) (rY : Πg h, eY (g * h) = eY g ⬝ eY h)
|
||||
[H1 : is_conn 0 X] [H2 : is_trunc 1 X] [is_conn 0 Y] [is_trunc 1 Y]
|
||||
(φ : G →g H) (p : hsquare eX eY φ (Ω→ f)) :
|
||||
[H2 : is_trunc 1 X] [is_trunc 1 Y] (φ : G →g H) (p : hsquare eX eY φ (Ω→ f)) :
|
||||
psquare (EM1_pmap eX rX) (EM1_pmap eY rY) (EM1_functor φ) f :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
|
@ -247,14 +217,14 @@ namespace EM
|
|||
definition EM1_pequiv'_natural {G H : Group} {X Y : Type*} (f : X →* Y) (eX : G ≃* Ω X)
|
||||
(eY : H ≃* Ω Y) (rX : Πg h, eX (g * h) = eX g ⬝ eX h) (rY : Πg h, eY (g * h) = eY g ⬝ eY h)
|
||||
[H1 : is_conn 0 X] [H2 : is_trunc 1 X] [is_conn 0 Y] [is_trunc 1 Y]
|
||||
(φ : G →g H) (p : Ω→ f ∘ eX ~ eY ∘ φ) :
|
||||
f ∘* EM1_pequiv' eX rX ~* EM1_pequiv' eY rY ∘* EM1_functor φ :=
|
||||
(φ : G →g H) (p : hsquare eX eY φ (Ω→ f)) :
|
||||
psquare (EM1_pequiv' eX rX) (EM1_pequiv' eY rY) (EM1_functor φ) f :=
|
||||
EM1_pmap_natural f eX eY rX rY φ p
|
||||
|
||||
definition EM1_pequiv_natural {G H : Group} {X Y : Type*} (f : X →* Y) (eX : G ≃g π₁ X)
|
||||
(eY : H ≃g π₁ Y) [H1 : is_conn 0 X] [H2 : is_trunc 1 X] [is_conn 0 Y] [is_trunc 1 Y]
|
||||
(φ : G →g H) (p : π→g[1] f ∘ eX ~ eY ∘ φ) :
|
||||
f ∘* EM1_pequiv eX ~* EM1_pequiv eY ∘* EM1_functor φ :=
|
||||
(φ : G →g H) (p : hsquare eX eY φ (π→g[1] f)) :
|
||||
psquare (EM1_pequiv eX) (EM1_pequiv eY) (EM1_functor φ) f :=
|
||||
EM1_pequiv'_natural f _ _ _ _ φ
|
||||
begin
|
||||
assert p' : ptrunc_functor 0 (Ω→ f) ∘* pequiv_of_isomorphism eX ~*
|
||||
|
@ -262,67 +232,71 @@ namespace EM
|
|||
exact p' ⬝h* (ptrunc_pequiv_natural 0 (Ω→ f)),
|
||||
end
|
||||
|
||||
definition EM1_pequiv_type_natural {X Y : Type*} (f : X →* Y) [H1 : is_conn 0 X] [H2 : is_trunc 1 X]
|
||||
[H3 : is_conn 0 Y] [H4 : is_trunc 1 Y] :
|
||||
f ∘* EM1_pequiv_type X ~* EM1_pequiv_type Y ∘* EM1_functor (π→g[1] f) :=
|
||||
begin refine EM1_pequiv_natural f _ _ _ _, reflexivity end
|
||||
definition EM1_pequiv_type_natural {X Y : Type*} (f : X →* Y)
|
||||
[H1 : is_conn 0 X] [H2 : is_trunc 1 X] [H3 : is_conn 0 Y] [H4 : is_trunc 1 Y] :
|
||||
psquare (EM1_pequiv_type X) (EM1_pequiv_type Y) (EM1_functor (π→g[1] f)) f :=
|
||||
begin refine EM1_pequiv_natural f _ _ _ _, exact homotopy.rfl end
|
||||
|
||||
definition EM_up_natural {G H : AbGroup} (φ : G →g H) {X Y : Type*} (f : X →* Y) {n : ℕ}
|
||||
(eX : Ω[succ (succ n)] X ≃* G) (eY : Ω[succ (succ n)] Y ≃* H) (p : φ ∘ eX ~ eY ∘ Ω→[succ (succ n)] f)
|
||||
: φ ∘ EM_up eX ~ EM_up eY ∘ Ω→[succ n] (Ω→ f) :=
|
||||
(eX : G →* Ω[succ (succ n)] X) (eY : H →* Ω[succ (succ n)] Y)
|
||||
(p : hsquare eX eY φ (Ω→[succ (succ n)] f))
|
||||
: hsquare (EM_up eX) (EM_up eY) φ (Ω→[succ n] (Ω→ f)) :=
|
||||
begin
|
||||
refine _ ⬝htyh p,
|
||||
exact to_homotopy (phinverse (loopn_succ_in_natural (succ n) f)⁻¹*)
|
||||
refine p ⬝htyh hsquare_of_psquare (loopn_succ_in_natural (succ n) f),
|
||||
end
|
||||
|
||||
definition EMadd1_pmap_natural {G H : AbGroup} {X Y : Type*} (f : X →* Y) (n : ℕ) (eX : Ω[succ n] X ≃* G)
|
||||
(eY : Ω[succ n] Y ≃* H) (rX : Πp q, eX (p ⬝ q) = eX p * eX q) (rY : Πp q, eY (p ⬝ q) = eY p * eY q)
|
||||
[H1 : is_conn n X] [H2 : is_trunc (n.+1) X] [H3 : is_conn n Y] [H4 : is_trunc (n.+1) Y]
|
||||
(φ : G →g H) (p : φ ∘ eX ~ eY ∘ Ω→[succ n] f) :
|
||||
f ∘* EMadd1_pmap n eX rX ~* EMadd1_pmap n eY rY ∘* EMadd1_functor φ n :=
|
||||
definition EMadd1_pmap_natural {G H : AbGroup} {X Y : Type*} (f : X →* Y) (n : ℕ)
|
||||
(eX : G →* Ω[succ n] X) (eY : H →* Ω[succ n] Y) (rX : Π(g h : G), eX (g * h) = eX g ⬝ eX h)
|
||||
(rY : Π(g h : H), eY (g * h) = eY g ⬝ eY h) [HX : is_trunc (n.+1) X] [HY : is_trunc (n.+1) Y]
|
||||
(φ : G →g H) (p : hsquare eX eY φ (Ω→[succ n] f)) :
|
||||
psquare (EMadd1_pmap n eX rX) (EMadd1_pmap n eY rY) (EMadd1_functor φ n) f :=
|
||||
begin
|
||||
revert X Y f eX eY rX rY H1 H2 H3 H4 p, induction n with n IH: intros,
|
||||
{ apply EM1_pmap_natural, exact @hhinverse _ _ _ _ _ _ eX eY p },
|
||||
revert X Y f eX eY rX rY HX HY p, induction n with n IH: intros,
|
||||
{ apply EM1_pmap_natural, exact p },
|
||||
{ do 2 rewrite [EMadd1_pmap_succ], refine _ ⬝* pwhisker_left _ !EMadd1_functor_succ⁻¹*,
|
||||
refine (ptrunc_elim_pcompose ((succ n).+1) _ _)⁻¹* ⬝* _ ⬝*
|
||||
(ptrunc_elim_ptrunc_functor ((succ n).+1) _ _)⁻¹*,
|
||||
apply ptrunc_elim_phomotopy,
|
||||
refine _ ⬝* !susp_elim_susp_functor⁻¹*,
|
||||
refine _ ⬝* susp_elim_phomotopy (IH _ _ _ _ _ (is_homomorphism_EM_up eX rX) _ (@is_conn_loop _ _ H1)
|
||||
(@is_trunc_loop _ _ H2) _ _ (EM_up_natural φ f eX eY p)),
|
||||
refine _ ⬝* susp_elim_phomotopy (IH _ _ _ _ _ (is_homomorphism_EM_up eX rX) _
|
||||
(@is_trunc_loop _ _ HX) _ (EM_up_natural φ f eX eY p)),
|
||||
apply susp_elim_natural }
|
||||
end
|
||||
|
||||
definition EMadd1_pequiv'_natural {G H : AbGroup} {X Y : Type*} (f : X →* Y) (n : ℕ) (eX : Ω[succ n] X ≃* G)
|
||||
(eY : Ω[succ n] Y ≃* H) (rX : Πp q, eX (p ⬝ q) = eX p * eX q) (rY : Πp q, eY (p ⬝ q) = eY p * eY q)
|
||||
definition EMadd1_pequiv'_natural {G H : AbGroup} {X Y : Type*} (f : X →* Y) (n : ℕ)
|
||||
(eX : G ≃* Ω[succ n] X) (eY : H ≃* Ω[succ n] Y) (rX : Π(g h : G), eX (g * h) = eX g ⬝ eX h)
|
||||
(rY : Π(g h : H), eY (g * h) = eY g ⬝ eY h)
|
||||
[H1 : is_conn n X] [H2 : is_trunc (n.+1) X] [is_conn n Y] [is_trunc (n.+1) Y]
|
||||
(φ : G →g H) (p : φ ∘ eX ~ eY ∘ Ω→[succ n] f) :
|
||||
f ∘* EMadd1_pequiv' n eX rX ~* EMadd1_pequiv' n eY rY ∘* EMadd1_functor φ n :=
|
||||
begin rexact EMadd1_pmap_natural f n eX eY rX rY φ p end
|
||||
(φ : G →g H) (p : hsquare eX eY φ (Ω→[succ n] f)) :
|
||||
psquare (EMadd1_pequiv' n eX rX) (EMadd1_pequiv' n eY rY) (EMadd1_functor φ n) f :=
|
||||
EMadd1_pmap_natural f n eX eY rX rY φ p
|
||||
|
||||
definition EMadd1_pequiv_natural_local_instance {X : Type*} (n : ℕ) [H : is_trunc (n.+1) X] :
|
||||
is_set (Ω[succ n] X) :=
|
||||
@(is_set_loopn (succ n) X) H
|
||||
|
||||
local attribute EMadd1_pequiv_natural_local_instance [instance]
|
||||
|
||||
definition EMadd1_pequiv_natural {G H : AbGroup} {X Y : Type*} (f : X →* Y) (n : ℕ) (eX : πg[n+1] X ≃g G)
|
||||
(eY : πg[n+1] Y ≃g H) [H1 : is_conn n X] [H2 : is_trunc (n.+1) X] [H3 : is_conn n Y]
|
||||
[H4 : is_trunc (n.+1) Y] (φ : G →g H) (p : φ ∘ eX ~ eY ∘ π→g[n+1] f) :
|
||||
f ∘* EMadd1_pequiv n eX ~* EMadd1_pequiv n eY ∘* EMadd1_functor φ n :=
|
||||
definition EMadd1_pequiv_natural {G H : AbGroup} {X Y : Type*} (f : X →* Y) (n : ℕ) (eX : G ≃g πg[n+1] X)
|
||||
(eY : H ≃g πg[n+1] Y) [H1 : is_conn n X] [H2 : is_trunc (n.+1) X] [H3 : is_conn n Y]
|
||||
[H4 : is_trunc (n.+1) Y] (φ : G →g H) (p : hsquare eX eY φ (π→g[n+1] f)) :
|
||||
psquare (EMadd1_pequiv n eX) (EMadd1_pequiv n eY) (EMadd1_functor φ n) f :=
|
||||
EMadd1_pequiv'_natural f n
|
||||
((ptrunc_pequiv 0 (Ω[succ n] X))⁻¹ᵉ* ⬝e* pequiv_of_isomorphism eX)
|
||||
((ptrunc_pequiv 0 (Ω[succ n] Y))⁻¹ᵉ* ⬝e* pequiv_of_isomorphism eY)
|
||||
_ _ φ (hhconcat (to_homotopy (phinverse (ptrunc_pequiv_natural 0 (Ω→[succ n] f)))) p)
|
||||
(pequiv_of_isomorphism eX ⬝e* ptrunc_pequiv 0 (Ω[succ n] X))
|
||||
(pequiv_of_isomorphism eY ⬝e* ptrunc_pequiv 0 (Ω[succ n] Y))
|
||||
_ _ φ (p ⬝htyh hsquare_of_psquare (ptrunc_pequiv_natural 0 (Ω→[succ n] f)))
|
||||
|
||||
definition EMadd1_pequiv_succ_natural {G H : AbGroup} {X Y : Type*} (f : X →* Y) (n : ℕ)
|
||||
(eX : πag[n+2] X ≃g G) (eY : πag[n+2] Y ≃g H) [is_conn (n.+1) X] [is_trunc (n.+2) X]
|
||||
[is_conn (n.+1) Y] [is_trunc (n.+2) Y] (φ : G →g H) (p : φ ∘ eX ~ eY ∘ π→g[n+2] f) :
|
||||
f ∘* EMadd1_pequiv_succ n eX ~* EMadd1_pequiv_succ n eY ∘* EMadd1_functor φ (n+1) :=
|
||||
(eX : G ≃g πag[n+2] X) (eY : H ≃g πag[n+2] Y) [is_conn (n.+1) X] [is_trunc (n.+2) X]
|
||||
[is_conn (n.+1) Y] [is_trunc (n.+2) Y] (φ : G →g H) (p : hsquare eX eY φ (π→g[n+2] f)) :
|
||||
psquare (EMadd1_pequiv_succ n eX) (EMadd1_pequiv_succ n eY) (EMadd1_functor φ (n+1)) f :=
|
||||
@(EMadd1_pequiv_natural f (succ n) eX eY) _ _ _ _ φ p
|
||||
|
||||
definition EMadd1_pequiv_type_natural {X Y : Type*} (f : X →* Y) (n : ℕ)
|
||||
[H1 : is_conn (n+1) X] [H2 : is_trunc (n+1+1) X] [H3 : is_conn (n+1) Y] [H4 : is_trunc (n+1+1) Y] :
|
||||
f ∘* EMadd1_pequiv_type X n ~* EMadd1_pequiv_type Y n ∘* EMadd1_functor (π→g[n+2] f) (succ n) :=
|
||||
[H1 : is_conn (n+1) X] [H2 : is_trunc (n+1+1) X]
|
||||
[H3 : is_conn (n+1) Y] [H4 : is_trunc (n+1+1) Y] :
|
||||
psquare (EMadd1_pequiv_type X n) (EMadd1_pequiv_type Y n)
|
||||
(EMadd1_functor (π→g[n+2] f) (succ n)) f :=
|
||||
EMadd1_pequiv_succ_natural f n !isomorphism.refl !isomorphism.refl (π→g[n+2] f)
|
||||
proof λa, idp qed
|
||||
|
||||
|
@ -338,6 +312,38 @@ namespace EM
|
|||
apply EMadd1_pequiv_type_natural }
|
||||
end
|
||||
|
||||
definition EM1_functor_trivial_homomorphism [constructor] (G H : Group) :
|
||||
EM1_functor (trivial_homomorphism G H) ~* pconst (EM1 G) (EM1 H) :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ intro x, induction x using EM.set_rec,
|
||||
{ reflexivity },
|
||||
{ apply eq_pathover_constant_right, apply hdeg_square,
|
||||
refine !elim_pth ⬝ _, apply resp_one }},
|
||||
{ reflexivity }
|
||||
end
|
||||
|
||||
definition EMadd1_functor_trivial_homomorphism (G H : AbGroup) (n : ℕ) :
|
||||
EMadd1_functor (trivial_homomorphism G H) n ~* pconst (EMadd1 G n) (EMadd1 H n) :=
|
||||
begin
|
||||
induction n with n h,
|
||||
{ exact EM1_functor_trivial_homomorphism G H },
|
||||
{ refine !EMadd1_functor_succ ⬝* ptrunc_functor_phomotopy (n+2) _ ⬝* !ptrunc_functor_pconst,
|
||||
refine susp_functor_phomotopy h ⬝* !susp_functor_pconst }
|
||||
end
|
||||
|
||||
definition EMadd1_pfunctor [constructor] (G H : AbGroup) (n : ℕ) :
|
||||
(G →gg H) →* EMadd1 G n →** EMadd1 H n :=
|
||||
pmap.mk (λφ, EMadd1_functor φ n) (eq_of_phomotopy (EMadd1_functor_trivial_homomorphism G H n))
|
||||
|
||||
definition loopn_EMadd1_add (G : AbGroup) (n m : ℕ) : Ω[n] (EMadd1 G (m + n)) ≃* EMadd1 G m :=
|
||||
begin
|
||||
induction n with n e,
|
||||
{ reflexivity },
|
||||
{ refine !loopn_succ_in ⬝e* Ω≃[n] (loop_EMadd1 G (m + n))⁻¹ᵉ* ⬝e* e }
|
||||
end
|
||||
|
||||
|
||||
/- The Eilenberg-MacLane space K(G,n) with the same homotopy group as X on level n.
|
||||
On paper this is written K(πₙ(X), n). The problem is that for
|
||||
* n = 0 the expression π₀(X) is a pointed set, and K(X,0) needs X to be a pointed set
|
||||
|
@ -359,7 +365,7 @@ namespace EM
|
|||
exact EM1_pequiv e },
|
||||
{ have is_conn (n+1) X, from H1,
|
||||
have is_trunc ((n+1).+1) X, from H2,
|
||||
exact EMadd1_pequiv (n+1) e⁻¹ᵍ }
|
||||
exact EMadd1_pequiv (n+1) e }
|
||||
end
|
||||
|
||||
-- definition EM1_functor_equiv' (X Y : Type*) [H1 : is_conn 0 X] [H2 : is_trunc 1 X]
|
||||
|
@ -456,7 +462,7 @@ namespace EM
|
|||
begin
|
||||
cases n with n, { exact _ },
|
||||
cases Y with Y H1 H2, cases Y with Y y₀,
|
||||
exact is_trunc_pmap_of_is_conn X n -1 _ (pointed.MK Y y₀) !le.refl H2,
|
||||
exact is_trunc_pmap_of_is_conn X n _ -1 _ (pointed.MK Y y₀) !le.refl H2,
|
||||
end
|
||||
|
||||
open category functor nat_trans
|
||||
|
@ -568,10 +574,10 @@ namespace EM
|
|||
equivalence.mk (EM_cfunctor.{u} (n+2)) (is_equivalence_EM_cfunctor.{u} n)
|
||||
end category
|
||||
|
||||
definition pequiv_EMadd1_of_loopn_pequiv_EM1 {G : AbGroup} {X : Type*} (n : ℕ) (e : Ω[n] X ≃* EM1 G)
|
||||
[H1 : is_conn n X] : X ≃* EMadd1 G n :=
|
||||
definition pequiv_EMadd1_of_loopn_pequiv_EM1 {G : AbGroup} {X : Type*} (n : ℕ)
|
||||
(e : Ω[n] X ≃* EM1 G) [H1 : is_conn n X] : X ≃* EMadd1 G n :=
|
||||
begin
|
||||
symmetry, apply EMadd1_pequiv,
|
||||
symmetry, apply EMadd1_pequiv, symmetry,
|
||||
refine isomorphism_of_eq (ap (λx, πg[x+1] X) !zero_add⁻¹) ⬝g homotopy_group_add X 0 n ⬝g _ ⬝g
|
||||
!fundamental_group_EM1,
|
||||
exact homotopy_group_isomorphism_of_pequiv 0 e,
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
-- informal proofs in collaboration with Egbert, Stefano, Robin, Ulrik
|
||||
|
||||
/- the adjunction between the smash product and pointed maps -/
|
||||
import .smash .susp ..pointed ..move_to_lib ..pyoneda
|
||||
import .smash .susp ..pointed_pi ..pyoneda
|
||||
|
||||
open bool pointed eq equiv is_equiv sum bool prod unit circle cofiber prod.ops wedge is_trunc
|
||||
function unit sigma susp sphere
|
||||
|
@ -595,7 +595,7 @@ namespace smash
|
|||
calc
|
||||
ppmap (⅀ A ∧ B) X ≃* ppmap (⅀ A) (ppmap B X) : smash_adjoint_pmap (⅀ A) B X
|
||||
... ≃* ppmap A (Ω (ppmap B X)) : susp_adjoint_loop A (ppmap B X)
|
||||
... ≃* ppmap A (ppmap B (Ω X)) : ppmap_pequiv_ppmap_right (loop_ppmap_commute B X)
|
||||
... ≃* ppmap A (ppmap B (Ω X)) : ppmap_pequiv_ppmap_right (loop_ppmap_pequiv B X)
|
||||
... ≃* ppmap (A ∧ B) (Ω X) : smash_adjoint_pmap A B (Ω X)
|
||||
... ≃* ppmap (⅀ (A ∧ B)) X : susp_adjoint_loop (A ∧ B) X
|
||||
|
||||
|
@ -604,7 +604,7 @@ namespace smash
|
|||
(ppcompose_left f) (ppcompose_left f) :=
|
||||
smash_adjoint_pmap_natural_right (⅀ A) B f ⬝h*
|
||||
susp_adjoint_loop_natural_right (ppcompose_left f) ⬝h*
|
||||
ppcompose_left_psquare (loop_pmap_commute_natural_right B f) ⬝h*
|
||||
ppcompose_left_psquare (loop_ppmap_pequiv_natural_right B f) ⬝h*
|
||||
(smash_adjoint_pmap_natural_right A B (Ω→ f))⁻¹ʰ* ⬝h*
|
||||
(susp_adjoint_loop_natural_right f)⁻¹ʰ*
|
||||
|
||||
|
@ -618,7 +618,7 @@ namespace smash
|
|||
(susp_adjoint_loop_natural_left (f ∧→ g))⁻¹ʰ*,
|
||||
rotate 2,
|
||||
exact !ppcompose_left_ppcompose_right ⬝v*
|
||||
ppcompose_left_psquare (loop_pmap_commute_natural_left X g),
|
||||
ppcompose_left_psquare (loop_ppmap_pequiv_natural_left X g),
|
||||
exact susp_adjoint_loop_natural_left f ⬝v* susp_adjoint_loop_natural_right (ppcompose_right g)
|
||||
end
|
||||
|
||||
|
|
|
@ -52,21 +52,25 @@ namespace susp
|
|||
{f₁₀ : A₀₀ →* A₂₀} {f₁₂ : A₀₂ →* A₂₂}
|
||||
{f₀₁ : A₀₀ →* A₀₂} {f₂₁ : A₂₀ →* A₂₂}
|
||||
|
||||
-- rename: susp_functor_psquare
|
||||
definition suspend_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : psquare (⅀→ f₁₀) (⅀→ f₁₂) (⅀→ f₀₁) (⅀→ f₂₁) :=
|
||||
sorry
|
||||
definition susp_functor_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
psquare (⅀→ f₁₀) (⅀→ f₁₂) (⅀→ f₀₁) (⅀→ f₂₁) :=
|
||||
!susp_functor_pcompose⁻¹* ⬝* susp_functor_phomotopy p ⬝* !susp_functor_pcompose
|
||||
|
||||
definition susp_to_loop_psquare (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂) (f₀₁ : susp A₀₀ →* A₀₂) (f₂₁ : susp A₂₀ →* A₂₂) : (psquare (⅀→ f₁₀) f₁₂ f₀₁ f₂₁) → (psquare f₁₀ (Ω→ f₁₂) ((loop_susp_pintro A₀₀ A₀₂) f₀₁) ((loop_susp_pintro A₂₀ A₂₂) f₂₁)) :=
|
||||
definition susp_to_loop_psquare (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂)
|
||||
(f₀₁ : susp A₀₀ →* A₀₂) (f₂₁ : susp A₂₀ →* A₂₂) : psquare (⅀→ f₁₀) f₁₂ f₀₁ f₂₁ →
|
||||
psquare f₁₀ (Ω→ f₁₂) (loop_susp_pintro A₀₀ A₀₂ f₀₁) (loop_susp_pintro A₂₀ A₂₂ f₂₁) :=
|
||||
begin
|
||||
intro p,
|
||||
refine pvconcat _ (ap1_psquare p),
|
||||
exact loop_susp_unit_natural f₁₀
|
||||
exact (loop_susp_unit_natural f₁₀)⁻¹*
|
||||
end
|
||||
|
||||
definition loop_to_susp_square (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂) (f₀₁ : A₀₀ →* Ω A₀₂) (f₂₁ : A₂₀ →* Ω A₂₂) : (psquare f₁₀ (Ω→ f₁₂) f₀₁ f₂₁) → (psquare (⅀→ f₁₀) f₁₂ ((susp_pelim A₀₀ A₀₂) f₀₁) ((susp_pelim A₂₀ A₂₂) f₂₁)) :=
|
||||
definition loop_to_susp_square (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂)
|
||||
(f₀₁ : A₀₀ →* Ω A₀₂) (f₂₁ : A₂₀ →* Ω A₂₂) : psquare f₁₀ (Ω→ f₁₂) f₀₁ f₂₁ →
|
||||
psquare (⅀→ f₁₀) f₁₂ (susp_pelim A₀₀ A₀₂ f₀₁) (susp_pelim A₂₀ A₂₂ f₂₁) :=
|
||||
begin
|
||||
intro p,
|
||||
refine pvconcat (suspend_psquare p) _,
|
||||
refine susp_functor_psquare p ⬝v* _,
|
||||
exact psquare_transpose (loop_susp_counit_natural f₁₂)
|
||||
end
|
||||
|
||||
|
|
|
@ -38,6 +38,37 @@ namespace eq
|
|||
transport C (ap g₁ p) (f z) = f (transport C p z) :=
|
||||
by induction p; reflexivity
|
||||
|
||||
variables {A A' B : Type} {a a₂ a₃ : A} {p p' : a = a₂} {p₂ : a₂ = a₃}
|
||||
{a' a₂' a₃' : A'} {b b₂ : B}
|
||||
|
||||
definition apd_eq_ap (f : A → A') (p : a = a₂) : eq_of_pathover (apd f p) = ap f p :=
|
||||
begin induction p, reflexivity end
|
||||
|
||||
definition eq_of_pathover_idp_constant (p : b =[idpath a] b₂) :
|
||||
eq_of_pathover_idp p = eq_of_pathover p :=
|
||||
begin induction p using idp_rec_on, reflexivity end
|
||||
|
||||
definition eq_of_pathover_change_path (r : p = p') (q : a' =[p] a₂') :
|
||||
eq_of_pathover (change_path r q) = eq_of_pathover q :=
|
||||
begin induction r, reflexivity end
|
||||
|
||||
definition eq_of_pathover_cono (q : a' =[p] a₂') (q₂ : a₂' =[p₂] a₃') :
|
||||
eq_of_pathover (q ⬝o q₂) = eq_of_pathover q ⬝ eq_of_pathover q₂ :=
|
||||
begin induction q₂, reflexivity end
|
||||
|
||||
definition eq_of_pathover_invo (q : a' =[p] a₂') :
|
||||
eq_of_pathover q⁻¹ᵒ = (eq_of_pathover q)⁻¹ :=
|
||||
begin induction q, reflexivity end
|
||||
|
||||
definition eq_of_pathover_concato_eq (q : a' =[p] a₂') (q₂ : a₂' = a₃') :
|
||||
eq_of_pathover (q ⬝op q₂) = eq_of_pathover q ⬝ q₂ :=
|
||||
begin induction q₂, reflexivity end
|
||||
|
||||
definition eq_of_pathover_eq_concato (q : a' = a₂') (q₂ : a₂' =[p₂] a₃') :
|
||||
eq_of_pathover (q ⬝po q₂) = q ⬝ eq_of_pathover q₂ :=
|
||||
begin induction q, induction q₂, reflexivity end
|
||||
|
||||
|
||||
end eq open eq
|
||||
|
||||
namespace nat
|
||||
|
@ -90,15 +121,22 @@ end nat
|
|||
-- ... ≃ (k ~* l) : phomotopy.sigma_char k l
|
||||
|
||||
namespace pointed
|
||||
/- move to pointed -/
|
||||
open sigma.ops
|
||||
|
||||
infixr ` →** `:29 := ppmap
|
||||
|
||||
end pointed open pointed
|
||||
|
||||
namespace trunc
|
||||
open trunc_index sigma.ops
|
||||
|
||||
definition ptrunc_functor_pconst [constructor] (n : ℕ₋₂) (X Y : Type*) :
|
||||
ptrunc_functor n (pconst X Y) ~* pconst (ptrunc n X) (ptrunc n Y) :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ intro x, induction x with x, reflexivity },
|
||||
{ reflexivity }
|
||||
end
|
||||
|
||||
-- TODO: redefine loopn_ptrunc_pequiv
|
||||
definition apn_ptrunc_functor (n : ℕ₋₂) (k : ℕ) {A B : Type*} (f : A →* B) :
|
||||
Ω→[k] (ptrunc_functor (n+k) f) ∘* (loopn_ptrunc_pequiv n k A)⁻¹ᵉ* ~*
|
||||
|
@ -240,6 +278,29 @@ end sigma open sigma
|
|||
|
||||
namespace group
|
||||
|
||||
infixr ` →gg `:56 := aghomomorphism
|
||||
|
||||
definition pmap_of_homomorphism2 [constructor] {G H K : AbGroup} (φ : G →g H →gg K) :
|
||||
G →* H →** K :=
|
||||
pmap.mk (λg, pmap_of_homomorphism (φ g))
|
||||
(eq_of_phomotopy (phomotopy_of_homotopy (ap010 group_fun (to_respect_one φ))))
|
||||
|
||||
definition homomorphism_apply [constructor] (G H : AbGroup) (g : G) :
|
||||
(G →gg H) →g H :=
|
||||
begin
|
||||
fapply homomorphism.mk,
|
||||
{ intro φ, exact φ g },
|
||||
{ intros φ φ', reflexivity }
|
||||
end
|
||||
|
||||
definition homomorphism_swap [constructor] {G H K : AbGroup} (φ : G →g H →gg K) :
|
||||
H →g G →gg K :=
|
||||
begin
|
||||
fapply homomorphism.mk,
|
||||
{ intro h, exact homomorphism_apply H K h ∘g φ },
|
||||
{ intro h h', apply homomorphism_eq, intro g, exact to_respect_mul (φ g) h h' }
|
||||
end
|
||||
|
||||
definition isomorphism.MK [constructor] {G H : Group} (φ : G →g H) (ψ : H →g G)
|
||||
(p : φ ∘g ψ ~ gid H) (q : ψ ∘g φ ~ gid G) : G ≃g H :=
|
||||
isomorphism.mk φ (adjointify φ ψ p q)
|
||||
|
@ -1132,10 +1193,6 @@ end injective_surjective
|
|||
|
||||
-- Yuri Sulyma's code from HoTT MRC
|
||||
|
||||
notation `⅀→`:(max+5) := susp_functor
|
||||
notation `⅀⇒`:(max+5) := susp_functor_phomotopy
|
||||
notation `Ω⇒`:(max+5) := ap1_phomotopy
|
||||
|
||||
definition ap1_phomotopy_symm {A B : Type*} {f g : A →* B} (p : f ~* g) : (Ω⇒ p)⁻¹* = Ω⇒ (p⁻¹*) :=
|
||||
begin
|
||||
induction p using phomotopy_rec_idp,
|
||||
|
@ -1153,7 +1210,6 @@ begin
|
|||
rewrite trans_refl
|
||||
end
|
||||
|
||||
|
||||
namespace pointed
|
||||
|
||||
definition pbool_pequiv_add_point_unit [constructor] : pbool ≃* unit₊ :=
|
||||
|
|
142
pointed.hlean
142
pointed.hlean
|
@ -97,82 +97,82 @@ namespace pointed
|
|||
end
|
||||
|
||||
/- remove some duplicates: loop_ppmap_commute, loop_ppmap_pequiv, loop_ppmap_pequiv', pfunext -/
|
||||
definition pfunext (X Y : Type*) : ppmap X (Ω Y) ≃* Ω (ppmap X Y) :=
|
||||
(loop_ppmap_commute X Y)⁻¹ᵉ*
|
||||
-- definition pfunext (X Y : Type*) : ppmap X (Ω Y) ≃* Ω (ppmap X Y) :=
|
||||
-- (loop_ppmap_commute X Y)⁻¹ᵉ*
|
||||
|
||||
definition loop_phomotopy [constructor] {A B : Type*} (f : A →* B) : Type* :=
|
||||
pointed.MK (f ~* f) phomotopy.rfl
|
||||
-- definition loop_phomotopy [constructor] {A B : Type*} (f : A →* B) : Type* :=
|
||||
-- pointed.MK (f ~* f) phomotopy.rfl
|
||||
|
||||
definition ppcompose_left_loop_phomotopy [constructor] {A B C : Type*} (g : B →* C) {f : A →* B}
|
||||
{h : A →* C} (p : g ∘* f ~* h) : loop_phomotopy f →* loop_phomotopy h :=
|
||||
pmap.mk (λq, p⁻¹* ⬝* pwhisker_left g q ⬝* p)
|
||||
(idp ◾** !pwhisker_left_refl ◾** idp ⬝ !trans_refl ◾** idp ⬝ !trans_left_inv)
|
||||
-- definition ppcompose_left_loop_phomotopy [constructor] {A B C : Type*} (g : B →* C) {f : A →* B}
|
||||
-- {h : A →* C} (p : g ∘* f ~* h) : loop_phomotopy f →* loop_phomotopy h :=
|
||||
-- pmap.mk (λq, p⁻¹* ⬝* pwhisker_left g q ⬝* p)
|
||||
-- (idp ◾** !pwhisker_left_refl ◾** idp ⬝ !trans_refl ◾** idp ⬝ !trans_left_inv)
|
||||
|
||||
definition ppcompose_left_loop_phomotopy' [constructor] {A B C : Type*} (g : B →* C) (f : A →* B)
|
||||
: loop_phomotopy f →* loop_phomotopy (g ∘* f) :=
|
||||
pmap.mk (λq, pwhisker_left g q) !pwhisker_left_refl
|
||||
-- definition ppcompose_left_loop_phomotopy' [constructor] {A B C : Type*} (g : B →* C) (f : A →* B)
|
||||
-- : loop_phomotopy f →* loop_phomotopy (g ∘* f) :=
|
||||
-- pmap.mk (λq, pwhisker_left g q) !pwhisker_left_refl
|
||||
|
||||
definition loop_ppmap_pequiv' [constructor] (A B : Type*) :
|
||||
Ω(ppmap A B) ≃* loop_phomotopy (pconst A B) :=
|
||||
pequiv_of_equiv (pmap_eq_equiv _ _) idp
|
||||
-- definition loop_ppmap_pequiv' [constructor] (A B : Type*) :
|
||||
-- Ω(ppmap A B) ≃* loop_phomotopy (pconst A B) :=
|
||||
-- pequiv_of_equiv (pmap_eq_equiv _ _) idp
|
||||
|
||||
definition ppmap_loop_pequiv' [constructor] (A B : Type*) :
|
||||
loop_phomotopy (pconst A B) ≃* ppmap A (Ω B) :=
|
||||
pequiv_of_equiv (!phomotopy.sigma_char ⬝e !pmap.sigma_char⁻¹ᵉ) idp
|
||||
-- definition ppmap_loop_pequiv' [constructor] (A B : Type*) :
|
||||
-- loop_phomotopy (pconst A B) ≃* ppmap A (Ω B) :=
|
||||
-- pequiv_of_equiv (!phomotopy.sigma_char ⬝e !pmap.sigma_char⁻¹ᵉ) idp
|
||||
|
||||
definition loop_ppmap_pequiv [constructor] (A B : Type*) : Ω(ppmap A B) ≃* ppmap A (Ω B) :=
|
||||
loop_ppmap_pequiv' A B ⬝e* ppmap_loop_pequiv' A B
|
||||
-- definition loop_ppmap_pequiv [constructor] (A B : Type*) : Ω(ppmap A B) ≃* ppmap A (Ω B) :=
|
||||
-- loop_ppmap_pequiv' A B ⬝e* ppmap_loop_pequiv' A B
|
||||
|
||||
definition loop_ppmap_pequiv'_natural_right' {X X' : Type} (x₀ : X) (A : Type*) (f : X → X') :
|
||||
psquare (loop_ppmap_pequiv' A _) (loop_ppmap_pequiv' A _)
|
||||
(Ω→ (ppcompose_left (pmap_of_map f x₀)))
|
||||
(ppcompose_left_loop_phomotopy' (pmap_of_map f x₀) !pconst) :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ esimp, intro p,
|
||||
refine _ ⬝ ap011 (λx y, phomotopy_of_eq (ap1_gen _ x y _))
|
||||
proof !eq_of_phomotopy_refl⁻¹ qed proof !eq_of_phomotopy_refl⁻¹ qed,
|
||||
refine _ ⬝ ap phomotopy_of_eq !ap1_gen_idp_left⁻¹,
|
||||
exact !phomotopy_of_eq_pcompose_left⁻¹ },
|
||||
{ refine _ ⬝ !idp_con⁻¹, exact sorry }
|
||||
end
|
||||
-- definition loop_ppmap_pequiv'_natural_right' {X X' : Type} (x₀ : X) (A : Type*) (f : X → X') :
|
||||
-- psquare (loop_ppmap_pequiv' A _) (loop_ppmap_pequiv' A _)
|
||||
-- (Ω→ (ppcompose_left (pmap_of_map f x₀)))
|
||||
-- (ppcompose_left_loop_phomotopy' (pmap_of_map f x₀) !pconst) :=
|
||||
-- begin
|
||||
-- fapply phomotopy.mk,
|
||||
-- { esimp, intro p,
|
||||
-- refine _ ⬝ ap011 (λx y, phomotopy_of_eq (ap1_gen _ x y _))
|
||||
-- proof !eq_of_phomotopy_refl⁻¹ qed proof !eq_of_phomotopy_refl⁻¹ qed,
|
||||
-- refine _ ⬝ ap phomotopy_of_eq !ap1_gen_idp_left⁻¹,
|
||||
-- exact !phomotopy_of_eq_pcompose_left⁻¹ },
|
||||
-- { refine _ ⬝ !idp_con⁻¹, exact sorry }
|
||||
-- end
|
||||
|
||||
definition loop_ppmap_pequiv'_natural_right {X X' : Type*} (A : Type*) (f : X →* X') :
|
||||
psquare (loop_ppmap_pequiv' A X) (loop_ppmap_pequiv' A X')
|
||||
(Ω→ (ppcompose_left f)) (ppcompose_left_loop_phomotopy f !pcompose_pconst) :=
|
||||
begin
|
||||
induction X' with X' x₀', induction f with f f₀, esimp at f, esimp at f₀, induction f₀,
|
||||
apply psquare_of_phomotopy,
|
||||
exact sorry
|
||||
end
|
||||
-- definition loop_ppmap_pequiv'_natural_right {X X' : Type*} (A : Type*) (f : X →* X') :
|
||||
-- psquare (loop_ppmap_pequiv' A X) (loop_ppmap_pequiv' A X')
|
||||
-- (Ω→ (ppcompose_left f)) (ppcompose_left_loop_phomotopy f !pcompose_pconst) :=
|
||||
-- begin
|
||||
-- induction X' with X' x₀', induction f with f f₀, esimp at f, esimp at f₀, induction f₀,
|
||||
-- apply psquare_of_phomotopy,
|
||||
-- exact sorry
|
||||
-- end
|
||||
|
||||
definition ppmap_loop_pequiv'_natural_right {X X' : Type*} (A : Type*) (f : X →* X') :
|
||||
psquare (ppmap_loop_pequiv' A X) (ppmap_loop_pequiv' A X')
|
||||
(ppcompose_left_loop_phomotopy f !pcompose_pconst) (ppcompose_left (Ω→ f)) :=
|
||||
begin
|
||||
exact sorry
|
||||
end
|
||||
-- definition ppmap_loop_pequiv'_natural_right {X X' : Type*} (A : Type*) (f : X →* X') :
|
||||
-- psquare (ppmap_loop_pequiv' A X) (ppmap_loop_pequiv' A X')
|
||||
-- (ppcompose_left_loop_phomotopy f !pcompose_pconst) (ppcompose_left (Ω→ f)) :=
|
||||
-- begin
|
||||
-- exact sorry
|
||||
-- end
|
||||
|
||||
definition loop_pmap_commute_natural_right_direct {X X' : Type*} (A : Type*) (f : X →* X') :
|
||||
psquare (loop_ppmap_pequiv A X) (loop_ppmap_pequiv A X')
|
||||
(Ω→ (ppcompose_left f)) (ppcompose_left (Ω→ f)) :=
|
||||
begin
|
||||
induction X' with X' x₀', induction f with f f₀, esimp at f, esimp at f₀, induction f₀,
|
||||
-- refine _ ⬝* _ ◾* _, rotate 4,
|
||||
fapply phomotopy.mk,
|
||||
{ intro p, esimp, esimp [pmap_eq_equiv, pcompose_pconst], exact sorry },
|
||||
{ exact sorry }
|
||||
end
|
||||
-- definition loop_pmap_commute_natural_right_direct {X X' : Type*} (A : Type*) (f : X →* X') :
|
||||
-- psquare (loop_ppmap_pequiv A X) (loop_ppmap_pequiv A X')
|
||||
-- (Ω→ (ppcompose_left f)) (ppcompose_left (Ω→ f)) :=
|
||||
-- begin
|
||||
-- induction X' with X' x₀', induction f with f f₀, esimp at f, esimp at f₀, induction f₀,
|
||||
-- -- refine _ ⬝* _ ◾* _, rotate 4,
|
||||
-- fapply phomotopy.mk,
|
||||
-- { intro p, esimp, esimp [pmap_eq_equiv, pcompose_pconst], exact sorry },
|
||||
-- { exact sorry }
|
||||
-- end
|
||||
|
||||
definition loop_pmap_commute_natural_left {A A' : Type*} (X : Type*) (f : A' →* A) :
|
||||
psquare (loop_ppmap_commute A X) (loop_ppmap_commute A' X)
|
||||
(Ω→ (ppcompose_right f)) (ppcompose_right f) :=
|
||||
sorry
|
||||
-- definition loop_pmap_commute_natural_left {A A' : Type*} (X : Type*) (f : A' →* A) :
|
||||
-- psquare (loop_ppmap_commute A X) (loop_ppmap_commute A' X)
|
||||
-- (Ω→ (ppcompose_right f)) (ppcompose_right f) :=
|
||||
-- sorry
|
||||
|
||||
definition loop_pmap_commute_natural_right {X X' : Type*} (A : Type*) (f : X →* X') :
|
||||
psquare (loop_ppmap_commute A X) (loop_ppmap_commute A X')
|
||||
(Ω→ (ppcompose_left f)) (ppcompose_left (Ω→ f)) :=
|
||||
loop_ppmap_pequiv'_natural_right A f ⬝h* ppmap_loop_pequiv'_natural_right A f
|
||||
-- definition loop_pmap_commute_natural_right {X X' : Type*} (A : Type*) (f : X →* X') :
|
||||
-- psquare (loop_ppmap_commute A X) (loop_ppmap_commute A X')
|
||||
-- (Ω→ (ppcompose_left f)) (ppcompose_left (Ω→ f)) :=
|
||||
-- loop_ppmap_pequiv'_natural_right A f ⬝h* ppmap_loop_pequiv'_natural_right A f
|
||||
|
||||
/-
|
||||
Do we want to use a structure of homotopies between pointed homotopies? Or are equalities fine?
|
||||
|
@ -296,14 +296,6 @@ namespace pointed
|
|||
{f₀₃ : A₀₂ →* A₀₄} {f₂₃ : A₂₂ →* A₂₄} {f₄₃ : A₄₂ →* A₄₄}
|
||||
{f₁₄ f₁₄' : A₀₄ →* A₂₄} {f₃₄ : A₂₄ →* A₄₄}
|
||||
|
||||
definition phconst_square (f₀₁ : A₀₀ →* A₀₂) (f₂₁ : A₂₀ →* A₂₂) :
|
||||
psquare (pconst A₀₀ A₂₀) (pconst A₀₂ A₂₂) f₀₁ f₂₁ :=
|
||||
!pcompose_pconst ⬝* !pconst_pcompose⁻¹*
|
||||
|
||||
definition pvconst_square (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂) :
|
||||
psquare f₁₀ f₁₂ (pconst A₀₀ A₀₂) (pconst A₂₀ A₂₂) :=
|
||||
!pconst_pcompose ⬝* !pcompose_pconst⁻¹*
|
||||
|
||||
definition pvconst_square_pcompose (f₃₀ : A₂₀ →* A₄₀) (f₁₀ : A₀₀ →* A₂₀)
|
||||
(f₃₂ : A₂₂ →* A₄₂) (f₁₂ : A₀₂ →* A₂₂) :
|
||||
pvconst_square (f₃₀ ∘* f₁₀) (f₃₂ ∘* f₁₂) = pvconst_square f₁₀ f₁₂ ⬝h* pvconst_square f₃₀ f₃₂ :=
|
||||
|
@ -325,12 +317,6 @@ namespace pointed
|
|||
phconst_square (f₀₃ ∘* f₀₁) (f₂₃ ∘* f₁₂) = phconst_square f₀₁ f₁₂ ⬝v* phconst_square f₀₃ f₂₃ :=
|
||||
sorry
|
||||
|
||||
definition ptranspose (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : psquare f₀₁ f₂₁ f₁₀ f₁₂ :=
|
||||
p⁻¹*
|
||||
|
||||
definition hsquare_of_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : hsquare f₁₀ f₁₂ f₀₁ f₂₁ :=
|
||||
p
|
||||
|
||||
definition rfl_phomotopy_hconcat (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : phomotopy.rfl ⬝ph* p = p :=
|
||||
idp ◾** (ap (pwhisker_left f₁₂) !refl_symm ⬝ !pwhisker_left_refl) ⬝ !trans_refl
|
||||
|
||||
|
|
112
pointed_pi.hlean
112
pointed_pi.hlean
|
@ -333,7 +333,7 @@ namespace pointed
|
|||
definition phomotopy {A : Type*} {P : A → Type} {x : P pt} (f g : ppi P x) : Type :=
|
||||
ppi (λa, f a = g a) (respect_pt f ⬝ (respect_pt g)⁻¹)
|
||||
|
||||
variables {A : Type*} {P Q R : A → Type*} {f g h : Π*a, P a}
|
||||
variables {A A' A'' : Type*} {P Q R : A → Type*} {P' : A' → Type*} {f g h : Π*a, P a}
|
||||
{B C D : A → Type} {b₀ : B pt} {c₀ : C pt} {d₀ : D pt}
|
||||
{k k' l m : ppi B b₀}
|
||||
|
||||
|
@ -465,6 +465,28 @@ namespace pointed
|
|||
(f : Π*(a : A), P a) : Π*(a : A), Q a :=
|
||||
ppi_functor_right g (respect_pt (g pt)) f
|
||||
|
||||
definition ppi_compose_pmap [constructor] (g : Π*(a : A), P a) (f : A' →* A) :
|
||||
Π*(a' : A'), P (f a') :=
|
||||
ppi.mk (λa', g (f a'))
|
||||
(eq_of_pathover_idp (change_path !con.right_inv
|
||||
(apd g (respect_pt f) ⬝op respect_pt g ⬝o (apd (λx, Point (P x)) (respect_pt f))⁻¹ᵒ)))
|
||||
/- alternate proof for respecting the point -/
|
||||
-- (eq_tr_of_pathover (apd g (respect_pt f)) ⬝ ap (transport _ _) (respect_pt g) ⬝
|
||||
-- apdt (λx, Point (P x)) (respect_pt f)⁻¹)
|
||||
|
||||
definition ppi_compose_pmap_phomotopy [constructor] (g : A →* A'') (f : A' →* A) :
|
||||
ppi_compose_pmap g f ~* g ∘* f :=
|
||||
begin
|
||||
refine phomotopy.mk homotopy.rfl _,
|
||||
refine !idp_con ⬝ _, esimp,
|
||||
symmetry,
|
||||
refine !eq_of_pathover_idp_constant ⬝ _,
|
||||
refine !eq_of_pathover_change_path ⬝ !eq_of_pathover_cono ⬝ _,
|
||||
refine (!eq_of_pathover_concato_eq ⬝ !apd_eq_ap ◾ idp) ◾
|
||||
(!eq_of_pathover_invo ⬝ (!apd_eq_ap ⬝ !ap_constant)⁻²) ⬝ _,
|
||||
reflexivity
|
||||
end
|
||||
|
||||
definition pmap_compose_ppi_ppi_const [constructor] (g : Π(a : A), ppmap (P a) (Q a)) :
|
||||
pmap_compose_ppi g (ppi_const P) ~* ppi_const Q :=
|
||||
proof phomotopy.mk (λa, respect_pt (g a)) !idp_con⁻¹ qed
|
||||
|
@ -473,6 +495,17 @@ namespace pointed
|
|||
pmap_compose_ppi (λa, pconst (P a) (Q a)) f ~* ppi_const Q :=
|
||||
phomotopy.mk homotopy.rfl !ap_constant⁻¹
|
||||
|
||||
definition ppi_compose_pmap_ppi_const [constructor] (f : A' →* A) :
|
||||
ppi_compose_pmap (ppi_const P) f ~* ppi_const (P ∘ f) :=
|
||||
phomotopy.mk homotopy.rfl
|
||||
begin
|
||||
exact (ap eq_of_pathover_idp (change_path_of_pathover _ _ _ !cono.right_inv))⁻¹,
|
||||
end
|
||||
|
||||
definition ppi_compose_pmap_pconst [constructor] (g : Π*(a : A), P a) :
|
||||
ppi_compose_pmap g (pconst A' A) ~* pconst A' (P pt) :=
|
||||
phomotopy.mk (λa, respect_pt g) !idpo_concato_eq⁻¹
|
||||
|
||||
definition pmap_compose_ppi2 [constructor] {g g' : Π(a : A), ppmap (P a) (Q a)}
|
||||
{f f' : Π*(a : A), P a} (p : Πa, g a ~* g' a) (q : f ~* f') :
|
||||
pmap_compose_ppi g f ~* pmap_compose_ppi g' f' :=
|
||||
|
@ -537,6 +570,18 @@ namespace pointed
|
|||
(Π*(a : A), P a) →* Π*(a : A), Q a :=
|
||||
pmap.mk (pmap_compose_ppi g) (eq_of_phomotopy (pmap_compose_ppi_ppi_const g))
|
||||
|
||||
definition pppi_compose_right [constructor] (f : A' →* A) :
|
||||
(Π*(a : A), P a) →* Π*(a' : A'), P (f a') :=
|
||||
pmap.mk (λh, ppi_compose_pmap h f) (eq_of_phomotopy (ppi_compose_pmap_ppi_const f))
|
||||
|
||||
definition pppi_compose_right_phomotopy [constructor] (f : A' →* A) :
|
||||
pppi_compose_right f ~* @ppcompose_right _ _ A'' f :=
|
||||
begin
|
||||
fapply phomotopy_mk_ppmap,
|
||||
{ intro g, exact ppi_compose_pmap_phomotopy g f },
|
||||
{ exact sorry }
|
||||
end
|
||||
|
||||
-- pppi_compose_left is a functor in the following sense
|
||||
definition pppi_compose_left_pcompose (g : Π (a : A), Q a →* R a) (f : Π (a : A), P a →* Q a)
|
||||
: pppi_compose_left (λ a, g a ∘* f a) ~* (pppi_compose_left g ∘* pppi_compose_left f) :=
|
||||
|
@ -832,13 +877,14 @@ namespace pointed
|
|||
Ω (Π*a, B a) ≃* Π*(a : A), Ω (B a) :=
|
||||
pequiv_of_equiv !ppi_eq_equiv idp
|
||||
|
||||
definition loop_pppi_pequiv_natural {A : Type*} {X Y : A → Type*} (f : Π (a : A), X a →* Y a) :
|
||||
psquare
|
||||
definition loop_pppi_pequiv_natural_right {A : Type*} {X Y : A → Type*}
|
||||
(f : Π (a : A), X a →* Y a) :
|
||||
psquare (loop_pppi_pequiv X)
|
||||
(loop_pppi_pequiv Y)
|
||||
(Ω→ (pppi_compose_left f))
|
||||
(pppi_compose_left (λ a, Ω→ (f a)))
|
||||
(loop_pppi_pequiv X)
|
||||
(loop_pppi_pequiv Y) :=
|
||||
(pppi_compose_left (λ a, Ω→ (f a))) :=
|
||||
begin
|
||||
apply ptranspose,
|
||||
revert Y f, refine fiberwise_pointed_map_rec _ _, intro Y f,
|
||||
fapply phomotopy.mk,
|
||||
{ exact ppi_eq_equiv_natural_gen (pmap_compose_ppi_ppi_const (λa, pmap_of_map (f a) pt))
|
||||
|
@ -846,7 +892,16 @@ namespace pointed
|
|||
{ exact !ppi_eq_equiv_natural_gen_refl ◾ (!idp_con ⬝ !eq_of_phomotopy_refl) }
|
||||
end
|
||||
|
||||
definition loopn_pppi_pequiv [constructor] (n : ℕ) {A : Type*} (B : A → Type*) :
|
||||
definition loop_pppi_pequiv_natural_left {A B : Type*} {X : A → Type*} (f : B →* A) :
|
||||
psquare (loop_pppi_pequiv X)
|
||||
(loop_pppi_pequiv (X ∘ f))
|
||||
(Ω→ (pppi_compose_right f))
|
||||
(pppi_compose_right f) :=
|
||||
begin
|
||||
exact sorry
|
||||
end
|
||||
|
||||
definition loopn_pppi_pequiv (n : ℕ) {A : Type*} (B : A → Type*) :
|
||||
Ω[n] (Π*a, B a) ≃* Π*(a : A), Ω[n] (B a) :=
|
||||
begin
|
||||
induction n with n IH,
|
||||
|
@ -854,13 +909,34 @@ namespace pointed
|
|||
{ refine loop_pequiv_loop IH ⬝e* loop_pppi_pequiv (λa, Ω[n] (B a)) }
|
||||
end
|
||||
|
||||
-- definition trivial_homotopy_group_pppi {A : Type*} {B : A → Type*} {n : ℕ}
|
||||
-- (H : Πa, is_contr (Ω[n] (B a))) : is_contr (π[n] (Π*a, B a)) :=
|
||||
-- begin
|
||||
-- apply is_trunc_trunc_of_is_trunc,
|
||||
-- apply is_trunc_equiv_closed_rev,
|
||||
-- apply loopn_pppi_pequiv
|
||||
-- end
|
||||
definition loop_ppmap_pequiv [constructor] (A B : Type*) : Ω (A →** B) ≃* A →** Ω B :=
|
||||
!loop_pppi_pequiv
|
||||
|
||||
definition loop_ppmap_pequiv_natural_right (A : Type*) {X Y : Type*} (f : X →* Y) :
|
||||
psquare (loop_ppmap_pequiv A X)
|
||||
(loop_ppmap_pequiv A Y)
|
||||
(Ω→ (ppcompose_left f))
|
||||
(ppcompose_left (Ω→ f)) :=
|
||||
begin
|
||||
exact loop_pppi_pequiv_natural_right (λa, f)
|
||||
end
|
||||
|
||||
definition loop_ppmap_pequiv_natural_left {A B : Type*} (X : Type*) (f : A →* B) :
|
||||
psquare (loop_ppmap_pequiv B X)
|
||||
(loop_ppmap_pequiv A X)
|
||||
(Ω→ (ppcompose_right f))
|
||||
(ppcompose_right f) :=
|
||||
begin
|
||||
refine Ω⇒ !pppi_compose_right_phomotopy⁻¹* ⬝ph* _ ⬝hp* !pppi_compose_right_phomotopy⁻¹*,
|
||||
exact loop_pppi_pequiv_natural_left f
|
||||
end
|
||||
|
||||
definition loopn_ppmap_pequiv (n : ℕ) (A B : Type*) : Ω[n] (A →** B) ≃* A →** Ω[n] B :=
|
||||
!loopn_pppi_pequiv
|
||||
|
||||
definition pfunext [constructor] {A : Type*} (B : A → Type*) :
|
||||
(Π*(a : A), Ω (B a)) ≃* Ω (Π*a, B a) :=
|
||||
(loop_pppi_pequiv B)⁻¹ᵉ*
|
||||
|
||||
|
||||
/- below is an alternate proof strategy for the naturality of loop_pppi_pequiv_natural,
|
||||
|
@ -901,7 +977,7 @@ open is_trunc is_conn
|
|||
namespace is_conn
|
||||
section
|
||||
|
||||
variables (A : Type*) (n : ℕ₋₂) [H : is_conn (n.+1) A]
|
||||
variables (A : Type*) (n : ℕ₋₂) (H : is_conn (n.+1) A)
|
||||
include H
|
||||
|
||||
definition is_contr_ppi_match (P : A → Type*) (H : Πa, is_trunc (n.+1) (P a))
|
||||
|
@ -925,7 +1001,7 @@ namespace is_conn
|
|||
clear H2 H3, revert P H4,
|
||||
induction k with k IH: intro P H4,
|
||||
{ apply is_prop_of_imp_is_contr, intro f,
|
||||
apply is_contr_ppi_match A n P H4 },
|
||||
apply is_contr_ppi_match A n H P H4 },
|
||||
{ apply is_trunc_succ_of_is_trunc_loop
|
||||
(trunc_index.succ_le_succ (trunc_index.minus_two_le k)),
|
||||
intro f,
|
||||
|
@ -936,8 +1012,8 @@ namespace is_conn
|
|||
|
||||
definition is_trunc_pmap_of_is_conn (k l : ℕ₋₂) (B : Type*) (H2 : l ≤ n.+1+2+k)
|
||||
(H3 : is_trunc l B) : is_trunc k.+1 (A →* B) :=
|
||||
@is_trunc_equiv_closed _ _ k.+1 (pppi_equiv_pmap A B)
|
||||
(is_trunc_ppi_of_is_conn A n k l H2 (λ a, B) _)
|
||||
is_trunc_equiv_closed k.+1 (pppi_equiv_pmap A B)
|
||||
(is_trunc_ppi_of_is_conn A n H k l H2 (λ a, B) _)
|
||||
|
||||
end
|
||||
|
||||
|
|
|
@ -235,7 +235,7 @@ namespace spectrum
|
|||
definition szero [constructor] {N : succ_str} (E F : gen_prespectrum N) : E →ₛ F :=
|
||||
begin
|
||||
apply smap.mk (λn, pconst (E n) (F n)),
|
||||
intro n, exact !hpconst_square ⬝vp* !ap1_pconst
|
||||
intro n, exact !phconst_square ⬝vp* !ap1_pconst
|
||||
end
|
||||
|
||||
definition stransport [constructor] {N : succ_str} {A : Type} {a a' : A} (p : a = a')
|
||||
|
@ -588,13 +588,13 @@ namespace spectrum
|
|||
definition πg_glue_homotopy_π_glue (X : spectrum) (n : ℤ) : πg_glue X n ~ π_glue X n :=
|
||||
by reflexivity
|
||||
|
||||
definition π_glue_square {X Y : spectrum} (f : X →ₛ Y) (n : ℤ) :
|
||||
definition π_glue_natural {X Y : spectrum} (f : X →ₛ Y) (n : ℤ) :
|
||||
π_glue Y n ∘* π→[2] (f (2 - succ n)) ~* π→[3] (f (2 - n)) ∘* π_glue X n :=
|
||||
begin
|
||||
change π→[2] (equiv_glue_neg Y n) ∘* π→[2] (f (2 - succ n)) ~*
|
||||
π→[2] (Ω→ (f (2 - n))) ∘* π→[2] (equiv_glue_neg X n),
|
||||
refine homotopy_group_functor_psquare 2 _,
|
||||
refine !sglue_square ⬝v* ap1_psquare !pequiv_of_eq_commute
|
||||
refine !sglue_square ⬝v* ap1_psquare !pequiv_of_eq_natural⁻¹*
|
||||
end
|
||||
|
||||
definition homotopy_group_spectrum_irrel_one {n m : ℤ} {k : ℕ} (E : spectrum) (p : n + 1 = m + k)
|
||||
|
@ -658,7 +658,7 @@ namespace spectrum
|
|||
|
||||
definition LES_of_shomotopy_groups : chain_complex +3ℤ :=
|
||||
splice (λ(n : ℤ), LES_of_homotopy_groups (f (2 - n))) (2, 0)
|
||||
(π_glue Y) (π_glue X) (π_glue_square f)
|
||||
(π_glue Y) (π_glue X) (π_glue_natural f)
|
||||
|
||||
-- This LES is definitionally what we want:
|
||||
example (n : ℤ) : LES_of_shomotopy_groups (n, 0) = πₛ[n] Y := idp
|
||||
|
@ -818,7 +818,8 @@ namespace spectrum
|
|||
smap.mk (λn, pppi_compose_left (λa, f a n))
|
||||
begin
|
||||
intro n,
|
||||
exact psquare_pppi_compose_left (λa, (glue_square (f a) n)) ⬝v* !loop_pppi_pequiv_natural⁻¹ᵛ*
|
||||
exact psquare_pppi_compose_left (λa, (glue_square (f a) n)) ⬝v*
|
||||
(ptranspose !loop_pppi_pequiv_natural_right)⁻¹ᵛ*
|
||||
end
|
||||
|
||||
-- unpointed spi
|
||||
|
|
|
@ -221,7 +221,7 @@ namespace spectrum
|
|||
refine !passoc ⬝* _,
|
||||
refine pwhisker_left _ ((passoc _ _ (_ ∘* _))⁻¹*) ⬝* _,
|
||||
refine pwhisker_left _ !passoc⁻¹* ⬝* _,
|
||||
refine pwhisker_left _ (pwhisker_right _ (phomotopy_pinv_right_of_phomotopy (!loopn_succ_in_natural)⁻¹*)⁻¹*) ⬝* _,
|
||||
refine pwhisker_left _ (pwhisker_right _ (phomotopy_pinv_right_of_phomotopy (!loopn_succ_in_natural))⁻¹*) ⬝* _,
|
||||
refine pwhisker_right _ !apn_pinv ⬝* _,
|
||||
refine (phomotopy_pinv_left_of_phomotopy _)⁻¹*,
|
||||
refine apn_psquare k _,
|
||||
|
|
Loading…
Reference in a new issue