getting close in exact couple
This commit is contained in:
parent
ed00db374b
commit
c67fd11633
1 changed files with 18 additions and 3 deletions
|
@ -33,7 +33,7 @@ definition homology {B : AbGroup} (d : B →g B) (H : is_differential d) : AbGro
|
|||
@quotient_ab_group (ab_kernel d) (image_subgroup_of_diff d H)
|
||||
|
||||
definition homology_ugly {B : AbGroup} (d : B →g B) (H : is_differential d) : AbGroup :=
|
||||
(quotient_ab_group (image_subgroup (ab_subgroup_of_subgroup_incl (diff_im_in_ker d H))))
|
||||
@quotient_ab_group (ab_kernel d) (image_subgroup (ab_subgroup_of_subgroup_incl (diff_im_in_ker d H)))
|
||||
|
||||
definition homology_iso_ugly {B : AbGroup} (d : B →g B) (H : is_differential d) : (homology d H) ≃g (homology_ugly d H) :=
|
||||
begin
|
||||
|
@ -50,8 +50,22 @@ definition SES_iso_C {A B C C' : AbGroup} (ses : SES A B C) (k : C ≃g C') : SE
|
|||
fapply @is_surjective_compose _ _ _ k (SES.g ses),
|
||||
exact is_surjective_of_is_equiv k,
|
||||
exact SES.Hg ses,
|
||||
fapply is_exact.mk,
|
||||
repeat exact sorry
|
||||
fapply is_exact.mk,
|
||||
intro a,
|
||||
esimp,
|
||||
note h := SES.ex ses,
|
||||
note h2 := is_exact.im_in_ker h a,
|
||||
refine ap k h2 ⬝ _ ,
|
||||
exact to_respect_one k,
|
||||
intro b,
|
||||
intro k3,
|
||||
note h := SES.ex ses,
|
||||
note h3 := is_exact.ker_in_im h b,
|
||||
fapply is_exact.ker_in_im h,
|
||||
refine _ ⬝ ap k⁻¹ᵍ k3 ⬝ _ ,
|
||||
esimp,
|
||||
exact (to_left_inv (equiv_of_isomorphism k) ((SES.g ses) b))⁻¹,
|
||||
exact to_respect_one k⁻¹ᵍ
|
||||
end
|
||||
|
||||
definition SES_of_differential_ugly {B : AbGroup} (d : B →g B) (H : is_differential d) : SES (ab_image d) (ab_kernel d) (homology_ugly d H) :=
|
||||
|
@ -62,6 +76,7 @@ definition SES_of_differential_ugly {B : AbGroup} (d : B →g B) (H : is_differe
|
|||
definition SES_of_differential {B : AbGroup} (d : B →g B) (H : is_differential d) : SES (ab_image d) (ab_kernel d) (homology d H) :=
|
||||
begin
|
||||
exact SES_of_inclusion (ab_subgroup_of_subgroup_incl (diff_im_in_ker d H)) (is_embedding_ab_subgroup_of_subgroup_incl (diff_im_in_ker d H)),
|
||||
exact sorry,
|
||||
end
|
||||
|
||||
structure exact_couple (A B : AbGroup) : Type :=
|
||||
|
|
Loading…
Reference in a new issue