checkpoint EM
This commit is contained in:
parent
9a3eed11bb
commit
c7fb842124
1 changed files with 44 additions and 17 deletions
|
@ -565,34 +565,61 @@ namespace EM
|
||||||
|
|
||||||
open fiber EM.ops
|
open fiber EM.ops
|
||||||
|
|
||||||
definition loopn_succ_pfiber_postnikov_map (A : Type*) (k : ℕ) (n : ℕ₋₂) :
|
-- definition loopn_succ_pfiber_postnikov_map (A : Type*) (k : ℕ) (n : ℕ₋₂) :
|
||||||
Ω[k+1] (pfiber (postnikov_map A (n.+1))) ≃* Ω[k] (pfiber (postnikov_map (Ω A) n)) :=
|
-- Ω[k+1] (pfiber (postnikov_map A (n.+1))) ≃* Ω[k] (pfiber (postnikov_map (Ω A) n)) :=
|
||||||
|
-- begin
|
||||||
|
-- exact sorry
|
||||||
|
-- end
|
||||||
|
|
||||||
|
-- definition loopn_pfiber_postnikov_map (A : Type*) (n : ℕ) :
|
||||||
|
-- Ω[n] (pfiber (postnikov_map A n)) ≃* EM1 (πg[n+1] A) :=
|
||||||
|
-- begin
|
||||||
|
-- revert A, induction n with n IH: intro A,
|
||||||
|
-- { apply pfiber_postnikov_map_zero },
|
||||||
|
-- exact loopn_succ_pfiber_postnikov_map A n n ⬝e* IH (Ω A) ⬝e*
|
||||||
|
-- EM1_pequiv_EM1 !ghomotopy_group_succ_in⁻¹ᵍ
|
||||||
|
-- end
|
||||||
|
|
||||||
|
-- move
|
||||||
|
|
||||||
|
definition pgroup_of_Group (X : Group) : pgroup X :=
|
||||||
|
pgroup_of_group _ idp
|
||||||
|
|
||||||
|
open prod chain_complex succ_str fin
|
||||||
|
definition isomorphism_of_trivial_LES {A B : Type*} (f : A →* B) (n : ℕ)
|
||||||
|
(k : fin (nat.succ 2)) (HX1 : is_contr (homotopy_groups f (n+1, k)))
|
||||||
|
(HX2 : is_contr (homotopy_groups f (n+2, k))) :
|
||||||
|
Group_LES_of_homotopy_groups f (@S +3ℕ (S (n, k))) ≃g Group_LES_of_homotopy_groups f (S (n, k)) :=
|
||||||
begin
|
begin
|
||||||
exact sorry
|
induction k with k Hk,
|
||||||
|
cases k with k, rotate 1, cases k with k, rotate 1, cases k with k, rotate 1,
|
||||||
|
exfalso, apply lt_le_antisymm Hk, apply le_add_left,
|
||||||
|
all_goals exact let k := fin.mk _ Hk in let x : +3ℕ := (n, k) in let S : +3ℕ → +3ℕ := succ_str.S in
|
||||||
|
let z :=
|
||||||
|
@is_equiv_of_trivial _
|
||||||
|
(LES_of_homotopy_groups f) _
|
||||||
|
(is_exact_LES_of_homotopy_groups f (n+1, k))
|
||||||
|
(is_exact_LES_of_homotopy_groups f (S (n+1, k)))
|
||||||
|
HX1 HX2
|
||||||
|
(pgroup_of_Group (Group_LES_of_homotopy_groups f (S x)))
|
||||||
|
(pgroup_of_Group (Group_LES_of_homotopy_groups f (S (S x))))
|
||||||
|
(homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun f (S x))) in
|
||||||
|
isomorphism.mk (homomorphism_LES_of_homotopy_groups_fun f _) z
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
||||||
definition pfiber_postnikov_map_zero (A : Type*) :
|
definition pfiber_postnikov_map_zero (A : Type*) :
|
||||||
pfiber (postnikov_map A 0) ≃* EM1 (πg[1] A) :=
|
pfiber (postnikov_map A 0) ≃* EM1 (πg[1] A) :=
|
||||||
begin
|
begin
|
||||||
symmetry, apply EM1_pequiv,
|
symmetry, apply EM1_pequiv,
|
||||||
{ refine !homotopy_group_component⁻¹ᵍ ⬝g _,
|
{ symmetry, note z := isomorphism_of_trivial_LES (postnikov_map A 0) 1 0
|
||||||
apply homotopy_group_isomorphism_of_ptrunc_pequiv, exact le.refl 1, symmetry,
|
(trivial_homotopy_group_of_is_trunc (ptrunc 0 A) !zero_lt_succ)
|
||||||
refine !ptrunc_pequiv ⬝e* _,
|
(trivial_homotopy_group_of_is_trunc (ptrunc 0 A) !zero_lt_succ), exact sorry
|
||||||
exact sorry
|
-- rexact isomorphism_of_equiv (equiv_of_isomorphism z) sorry
|
||||||
},
|
},
|
||||||
{ apply @is_conn_fun_trunc_elim, apply is_conn_fun_tr }
|
{ apply @is_conn_fun_trunc_elim, apply is_conn_fun_tr }
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
||||||
definition loopn_pfiber_postnikov_map (A : Type*) (n : ℕ) :
|
|
||||||
Ω[n] (pfiber (postnikov_map A n)) ≃* EM1 (πg[n+1] A) :=
|
|
||||||
begin
|
|
||||||
revert A, induction n with n IH: intro A,
|
|
||||||
{ apply pfiber_postnikov_map_zero },
|
|
||||||
exact loopn_succ_pfiber_postnikov_map A n n ⬝e* IH (Ω A) ⬝e*
|
|
||||||
EM1_pequiv_EM1 !ghomotopy_group_succ_in⁻¹ᵍ
|
|
||||||
end
|
|
||||||
|
|
||||||
definition pfiber_postnikov_map_succ (A : Type*) (n : ℕ) :
|
definition pfiber_postnikov_map_succ (A : Type*) (n : ℕ) :
|
||||||
pfiber (postnikov_map A (n+1)) ≃* EMadd1 (πag[n+2] A) (n+1) :=
|
pfiber (postnikov_map A (n+1)) ≃* EMadd1 (πag[n+2] A) (n+1) :=
|
||||||
begin
|
begin
|
||||||
|
|
Loading…
Add table
Reference in a new issue