Merge branch 'master' of github.com:fpvandoorn/Spectral
This commit is contained in:
commit
c8043a6f9f
7 changed files with 149 additions and 33 deletions
|
@ -8,7 +8,7 @@ Constructions with groups
|
|||
|
||||
import .quotient_group .free_commutative_group .product_group
|
||||
|
||||
open eq is_equiv algebra is_trunc set_quotient relation sigma prod sum list trunc function equiv sigma.ops
|
||||
open eq is_equiv algebra is_trunc set_quotient relation sigma prod sum list trunc function equiv sigma.ops lift
|
||||
|
||||
namespace group
|
||||
|
||||
|
@ -118,7 +118,7 @@ namespace group
|
|||
}
|
||||
end
|
||||
|
||||
variables {I J : Set} {Y Y' Y'' : I → AbGroup}
|
||||
variables {I J : Type} [is_set I] [is_set J] {Y Y' Y'' : I → AbGroup}
|
||||
|
||||
definition dirsum_functor [constructor] (f : Πi, Y i →g Y' i) : dirsum Y →g dirsum Y' :=
|
||||
dirsum_elim (λi, dirsum_incl Y' i ∘g f i)
|
||||
|
@ -146,7 +146,7 @@ namespace group
|
|||
intro i y, exact sorry
|
||||
end
|
||||
|
||||
definition dirsum_functor_homotopy {f f' : Πi, Y i →g Y' i} (p : f ~2 f') :
|
||||
definition dirsum_functor_homotopy (f f' : Πi, Y i →g Y' i) (p : f ~2 f') :
|
||||
dirsum_functor f ~ dirsum_functor f' :=
|
||||
begin
|
||||
apply dirsum_homotopy,
|
||||
|
@ -167,13 +167,13 @@ namespace group
|
|||
{ intro ds,
|
||||
refine (homomorphism_comp_compute (dirsum_functor (λ i, f i)) (dirsum_functor (λ i, (f i)⁻¹ᵍ)) _)⁻¹ ⬝ _,
|
||||
refine dirsum_functor_compose (λ i, f i) (λ i, (f i)⁻¹ᵍ) ds ⬝ _,
|
||||
refine @dirsum_functor_homotopy I Y' Y' _ (λ i, !gid) (λ i, to_right_inv (equiv_of_isomorphism (f i))) ds ⬝ _,
|
||||
refine dirsum_functor_homotopy _ (λ i, !gid) (λ i, to_right_inv (equiv_of_isomorphism (f i))) ds ⬝ _,
|
||||
exact !dirsum_functor_gid
|
||||
},
|
||||
{ intro ds,
|
||||
refine (homomorphism_comp_compute (dirsum_functor (λ i, (f i)⁻¹ᵍ)) (dirsum_functor (λ i, f i)) _)⁻¹ ⬝ _,
|
||||
refine dirsum_functor_compose (λ i, (f i)⁻¹ᵍ) (λ i, f i) ds ⬝ _,
|
||||
refine @dirsum_functor_homotopy I Y Y _ (λ i, !gid) (λ i x,
|
||||
refine dirsum_functor_homotopy _ (λ i, !gid) (λ i x,
|
||||
proof
|
||||
to_left_inv (equiv_of_isomorphism (f i)) x
|
||||
qed
|
||||
|
@ -183,3 +183,36 @@ namespace group
|
|||
end
|
||||
|
||||
end group
|
||||
|
||||
namespace group
|
||||
|
||||
definition dirsum_down_left.{u v} {I : Type.{u}} [is_set I] {Y : I → AbGroup}
|
||||
: dirsum (Y ∘ down.{u v}) ≃g dirsum Y :=
|
||||
let to_hom := @dirsum_functor_left _ _ _ _ Y down.{u v} in
|
||||
let from_hom := dirsum_elim (λi, dirsum_incl (Y ∘ down) (up i)) in
|
||||
begin
|
||||
fapply isomorphism.mk,
|
||||
{ exact to_hom },
|
||||
fapply adjointify,
|
||||
{ exact from_hom },
|
||||
{ intro ds,
|
||||
refine (homomorphism_comp_compute to_hom from_hom ds)⁻¹ ⬝ _,
|
||||
refine @dirsum_homotopy I _ Y (dirsum Y) (to_hom ∘g from_hom) !gid _ ds,
|
||||
intro i y,
|
||||
refine homomorphism_comp_compute to_hom from_hom _ ⬝ _,
|
||||
refine ap to_hom (dirsum_elim_compute (λi, dirsum_incl (Y ∘ down) (up i)) i y) ⬝ _,
|
||||
refine dirsum_elim_compute _ (up i) y ⬝ _,
|
||||
reflexivity
|
||||
},
|
||||
{ intro ds,
|
||||
refine (homomorphism_comp_compute from_hom to_hom ds)⁻¹ ⬝ _,
|
||||
refine @dirsum_homotopy _ _ (Y ∘ down) (dirsum (Y ∘ down)) (from_hom ∘g to_hom) !gid _ ds,
|
||||
intro i y, induction i with i,
|
||||
refine homomorphism_comp_compute from_hom to_hom _ ⬝ _,
|
||||
refine ap from_hom (dirsum_elim_compute (λi, dirsum_incl Y (down i)) (up i) y) ⬝ _,
|
||||
refine dirsum_elim_compute _ i y ⬝ _,
|
||||
reflexivity
|
||||
}
|
||||
end
|
||||
|
||||
end group
|
||||
|
|
|
@ -6,7 +6,7 @@ namespace group
|
|||
|
||||
section
|
||||
|
||||
parameters (A : ℕ → AbGroup) (f : Πi , A i → A (i + 1))
|
||||
parameters (A : ℕ → AbGroup) (f : Πi , A i →g A (i + 1))
|
||||
variables {A' : AbGroup}
|
||||
|
||||
definition seq_colim_carrier : AbGroup := dirsum A
|
||||
|
@ -72,8 +72,21 @@ namespace group
|
|||
|
||||
definition seq_colim_functor [constructor] {A A' : ℕ → AbGroup}
|
||||
{f : Πi , A i →g A (i + 1)} {f' : Πi , A' i →g A' (i + 1)}
|
||||
(h : Πi, A i →g A' i) : seq_colim A f →g seq_colim A' f' :=
|
||||
sorry --_ ∘g _
|
||||
(h : Πi, A i →g A' i) (p : Πi, hsquare (f i) (f' i) (h i) (h (i+1))) :
|
||||
seq_colim A f →g seq_colim A' f' :=
|
||||
seq_colim_elim (λi, seq_colim_incl i ∘g h i)
|
||||
begin
|
||||
intro i a,
|
||||
refine !homomorphism_comp_compute ⬝ _ ⬝ !homomorphism_comp_compute⁻¹,
|
||||
refine _ ⬝ ap (seq_colim_incl (succ i)) (p i a)⁻¹,
|
||||
apply seq_colim_glue
|
||||
end
|
||||
|
||||
-- definition seq_colim_functor_compose [constructor] {A A' A'' : ℕ → AbGroup}
|
||||
-- {f : Πi , A i →g A (i + 1)} {f' : Πi , A' i →g A' (i + 1)} {f'' : Πi , A'' i →g A'' (i + 1)}
|
||||
-- (h : Πi, A i →g A' i) (p : Πi (a : A i), h (i+1) (f i a) = f' i (h i a))
|
||||
-- (h : Πi, A i →g A' i) (p : Πi (a : A i), h (i+1) (f i a) = f' i (h i a)) :
|
||||
-- seq_colim A f →g seq_colim A' f' :=
|
||||
-- sorry
|
||||
|
||||
end group
|
||||
|
|
|
@ -377,6 +377,12 @@ namespace seq_colim
|
|||
exact !pcompose_pid
|
||||
end
|
||||
|
||||
definition seq_colim_equiv_zigzag (g : Π⦃n⦄, A n → A' n) (h : Π⦃n⦄, A' n → A (succ n))
|
||||
(p : Π⦃n⦄ (a : A n), h (g a) = f a) (q : Π⦃n⦄ (a : A' n), g (h a) = f' a) :
|
||||
seq_colim f ≃ seq_colim f' :=
|
||||
sorry
|
||||
|
||||
|
||||
definition is_equiv_seq_colim_rec (P : seq_colim f → Type) :
|
||||
is_equiv (seq_colim_rec_unc :
|
||||
(Σ(Pincl : Π ⦃n : ℕ⦄ (a : A n), P (ι f a)),
|
||||
|
|
|
@ -112,10 +112,21 @@ notation `pH_` n `[`:0 binders `, ` r:(scoped E, parametrized_homology E n) `]`:
|
|||
definition unpointed_homology (X : Type) (E : spectrum) (n : ℤ) : AbGroup :=
|
||||
H_ n[X₊, E]
|
||||
|
||||
definition homology_functor [constructor] {X Y : Type*} {E F : spectrum} (f : X →* Y) (g : E →ₛ F) (n : ℤ)
|
||||
: homology X E n →g homology Y F n :=
|
||||
definition homology_functor [constructor] {X Y : Type*} {E F : prespectrum} (f : X →* Y)
|
||||
(g : E →ₛ F) (n : ℤ) : homology X E n →g homology Y F n :=
|
||||
pshomotopy_group_fun n (smash_prespectrum_fun f g)
|
||||
|
||||
definition homology_theory_spectrum_is_exact.{u} (E : spectrum.{u}) (n : ℤ) {X Y : Type*} (f : X →* Y) :
|
||||
is_exact_g (homology_functor f (sid (gen_spectrum.to_prespectrum E)) n)
|
||||
(homology_functor (pcod f) (sid (gen_spectrum.to_prespectrum E)) n) :=
|
||||
begin
|
||||
esimp[is_exact_g],
|
||||
-- fconstructor,
|
||||
-- { intro a, exact sorry },
|
||||
-- { intro a, exact sorry }
|
||||
exact sorry
|
||||
end
|
||||
|
||||
definition homology_theory_spectrum.{u} [constructor] (E : spectrum.{u}) : homology_theory.{u} :=
|
||||
begin
|
||||
fapply homology_theory.mk,
|
||||
|
@ -125,7 +136,7 @@ begin
|
|||
exact sorry,
|
||||
exact sorry,
|
||||
exact sorry,
|
||||
exact sorry,
|
||||
apply homology_theory_spectrum_is_exact,
|
||||
exact sorry
|
||||
-- sorry
|
||||
-- sorry
|
||||
|
|
|
@ -7,7 +7,7 @@ The Wedge Sum of a family of Pointed Types
|
|||
-/
|
||||
import homotopy.wedge ..move_to_lib ..choice
|
||||
|
||||
open eq pushout pointed unit trunc_index sigma bool equiv trunc choice unit is_trunc sigma.ops lift
|
||||
open eq is_equiv pushout pointed unit trunc_index sigma bool equiv trunc choice unit is_trunc sigma.ops lift function
|
||||
|
||||
definition fwedge' {I : Type} (F : I → Type*) : Type := pushout (λi, ⟨i, Point (F i)⟩) (λi, ⋆)
|
||||
definition pt' [constructor] {I : Type} {F : I → Type*} : fwedge' F := inr ⋆
|
||||
|
@ -123,6 +123,15 @@ namespace fwedge
|
|||
{ exact con.left_inv (respect_pt g) }
|
||||
end
|
||||
|
||||
definition fwedge_pmap_pinl [constructor] {I : Type} {F : I → Type*} : fwedge_pmap (λi, pinl i) ~* pid (⋁ F) :=
|
||||
begin
|
||||
fconstructor,
|
||||
{ intro x, induction x,
|
||||
reflexivity, reflexivity,
|
||||
apply eq_pathover, apply hdeg_square, refine !elim_glue ⬝ !ap_id⁻¹ },
|
||||
{ reflexivity }
|
||||
end
|
||||
|
||||
definition fwedge_pmap_equiv [constructor] {I : Type} (F : I → Type*) (X : Type*) :
|
||||
⋁F →* X ≃ Πi, F i →* X :=
|
||||
begin
|
||||
|
@ -167,7 +176,7 @@ namespace fwedge
|
|||
... ~* fwedge_pmap (λ i, !pid ∘* pinl i) : by exact fwedge_pmap_phomotopy (λ i, phomotopy.symm (pid_pcompose (pinl i)))
|
||||
... ~* !pid : by exact fwedge_pmap_eta !pid
|
||||
|
||||
definition fwedge_functor_compose {I : Type} {F F' F'' : I → Type*} (g : Π i, F' i →* F'' i)
|
||||
definition fwedge_functor_pcompose {I : Type} {F F' F'' : I → Type*} (g : Π i, F' i →* F'' i)
|
||||
(f : Π i, F i →* F' i) : fwedge_functor (λ i, g i ∘* f i) ~* fwedge_functor g ∘* fwedge_functor f :=
|
||||
calc fwedge_functor (λ i, g i ∘* f i)
|
||||
~* fwedge_pmap (λ i, (pinl i ∘* g i) ∘* f i)
|
||||
|
@ -183,7 +192,7 @@ namespace fwedge
|
|||
... ~* fwedge_functor g ∘* fwedge_functor f
|
||||
: by exact fwedge_pmap_eta (fwedge_functor g ∘* fwedge_functor f)
|
||||
|
||||
definition fwedge_functor_homotopy {I : Type} {F F' : I → Type*} {f g : Π i, F i →* F' i}
|
||||
definition fwedge_functor_phomotopy {I : Type} {F F' : I → Type*} {f g : Π i, F i →* F' i}
|
||||
(h : Π i, f i ~* g i) : fwedge_functor f ~* fwedge_functor g :=
|
||||
fwedge_pmap_phomotopy (λ i, pwhisker_left (pinl i) (h i))
|
||||
|
||||
|
@ -192,19 +201,45 @@ namespace fwedge
|
|||
let pfrom := fwedge_functor (λ i, (f i)⁻¹ᵉ*) in
|
||||
begin
|
||||
fapply pequiv_of_pmap, exact pto,
|
||||
fapply is_equiv.adjointify, exact pfrom,
|
||||
{ intro y, refine (fwedge_functor_compose (λ i, f i) (λ i, (f i)⁻¹ᵉ*) y)⁻¹ ⬝ _,
|
||||
refine fwedge_functor_homotopy (λ i, pright_inv (f i)) y ⬝ _,
|
||||
fapply adjointify, exact pfrom,
|
||||
{ intro y, refine (fwedge_functor_pcompose (λ i, f i) (λ i, (f i)⁻¹ᵉ*) y)⁻¹ ⬝ _,
|
||||
refine fwedge_functor_phomotopy (λ i, pright_inv (f i)) y ⬝ _,
|
||||
exact fwedge_functor_pid y
|
||||
},
|
||||
{ intro y, refine (fwedge_functor_compose (λ i, (f i)⁻¹ᵉ*) (λ i, f i) y)⁻¹ ⬝ _,
|
||||
refine fwedge_functor_homotopy (λ i, pleft_inv (f i)) y ⬝ _,
|
||||
{ intro y, refine (fwedge_functor_pcompose (λ i, (f i)⁻¹ᵉ*) (λ i, f i) y)⁻¹ ⬝ _,
|
||||
refine fwedge_functor_phomotopy (λ i, pleft_inv (f i)) y ⬝ _,
|
||||
exact fwedge_functor_pid y
|
||||
}
|
||||
end
|
||||
|
||||
definition plift_fwedge.{u v} {I : Type} {F : I → pType.{u}} : plift.{u v} (⋁ F) ≃* ⋁ (λ i, plift.{u v} (F i)) :=
|
||||
definition plift_fwedge.{u v} {I : Type} (F : I → pType.{u}) : plift.{u v} (⋁ F) ≃* ⋁ (plift.{u v} ∘ F) :=
|
||||
calc plift.{u v} (⋁ F) ≃* ⋁ F : by exact !pequiv_plift ⁻¹ᵉ*
|
||||
... ≃* ⋁ (λ i, plift.{u v} (F i)) : by exact fwedge_pequiv (λ i, !pequiv_plift)
|
||||
... ≃* ⋁ (λ i, plift.{u v} (F i)) : by exact fwedge_pequiv (λ i, !pequiv_plift)
|
||||
|
||||
definition fwedge_down_left.{u v} {I : Type} (F : I → pType) : ⋁ (F ∘ down.{u v}) ≃* ⋁ F :=
|
||||
let pto := @fwedge_pmap (lift.{u v} I) (F ∘ down) (⋁ F) (λ i, pinl (down i)) in
|
||||
let pfrom := @fwedge_pmap I F (⋁ (F ∘ down.{u v})) (λ i, pinl (up.{u v} i)) in
|
||||
begin
|
||||
fapply pequiv_of_pmap,
|
||||
{ exact pto },
|
||||
fapply adjointify,
|
||||
{ exact pfrom },
|
||||
{ intro x, exact calc pto (pfrom x) = fwedge_pmap (λ i, (pto ∘* pfrom) ∘* pinl i) x : by exact (fwedge_pmap_eta (pto ∘* pfrom) x)⁻¹
|
||||
... = fwedge_pmap (λ i, pto ∘* (pfrom ∘* pinl i)) x : by exact fwedge_pmap_phomotopy (λ i, passoc pto pfrom (pinl i)) x
|
||||
... = fwedge_pmap (λ i, pto ∘* pinl (up.{u v} i)) x : by exact fwedge_pmap_phomotopy (λ i, pwhisker_left pto (fwedge_pmap_beta (λ i, pinl (up.{u v} i)) i)) x
|
||||
... = fwedge_pmap pinl x : by exact fwedge_pmap_phomotopy (λ i, fwedge_pmap_beta (λ i, (pinl (down.{u v} i))) (up.{u v} i)) x
|
||||
... = x : by exact fwedge_pmap_pinl x
|
||||
},
|
||||
{ intro x, exact calc pfrom (pto x) = fwedge_pmap (λ i, (pfrom ∘* pto) ∘* pinl i) x : by exact (fwedge_pmap_eta (pfrom ∘* pto) x)⁻¹
|
||||
... = fwedge_pmap (λ i, pfrom ∘* (pto ∘* pinl i)) x : by exact fwedge_pmap_phomotopy (λ i, passoc pfrom pto (pinl i)) x
|
||||
... = fwedge_pmap (λ i, pfrom ∘* pinl (down.{u v} i)) x : by exact fwedge_pmap_phomotopy (λ i, pwhisker_left pfrom (fwedge_pmap_beta (λ i, pinl (down.{u v} i)) i)) x
|
||||
... = fwedge_pmap pinl x : by exact fwedge_pmap_phomotopy (λ i,
|
||||
begin induction i with i,
|
||||
exact fwedge_pmap_beta (λ i, (pinl (up.{u v} i))) i
|
||||
end
|
||||
) x
|
||||
... = x : by exact fwedge_pmap_pinl x
|
||||
}
|
||||
end
|
||||
|
||||
end fwedge
|
||||
|
|
|
@ -664,7 +664,7 @@ namespace smash
|
|||
(!smash_functor_phomotopy_refl ◾** idp ⬝ !refl_trans) ⬝pv**
|
||||
smash_functor_pconst_pcompose (pid A) (pid A) g
|
||||
|
||||
/- these lemmas are use to show that smash_functor_right is natural in all arguments -/
|
||||
/- Using these lemmas we show that smash_functor_right is natural in all arguments -/
|
||||
definition smash_functor_right_natural_right (f : C →* C') :
|
||||
psquare (smash_functor_right A B C) (smash_functor_right A B C')
|
||||
(ppcompose_left f) (ppcompose_left (pid A ∧→ f)) :=
|
||||
|
@ -926,8 +926,8 @@ namespace smash
|
|||
refine _ ⬝hp (!ap_con ⬝ !ap_compose'⁻¹ ◾ !elim_gluer)⁻¹, exact hrfl },
|
||||
end
|
||||
|
||||
definition smash_flip_smash_functor (f : A →* C) (g : B →* D) : psquare
|
||||
(smash_flip A B) (smash_flip C D) (f ∧→ g) (g ∧→ f) :=
|
||||
definition smash_flip_smash_functor (f : A →* C) (g : B →* D) :
|
||||
psquare (smash_flip A B) (smash_flip C D) (f ∧→ g) (g ∧→ f) :=
|
||||
begin
|
||||
apply phomotopy.mk (smash_flip_smash_functor' f g), refine !idp_con ⬝ _ ⬝ !idp_con⁻¹,
|
||||
refine !ap_ap011 ⬝ _, apply ap011_flip,
|
||||
|
|
|
@ -5,7 +5,7 @@ Authors: Michael Shulman, Floris van Doorn
|
|||
|
||||
-/
|
||||
|
||||
import homotopy.LES_of_homotopy_groups .splice ..colim types.pointed2 .EM ..pointed_pi .smash_adjoint ..algebra.seq_colim
|
||||
import homotopy.LES_of_homotopy_groups .splice ..colim types.pointed2 .EM ..pointed_pi .smash_adjoint ..algebra.seq_colim .fwedge
|
||||
open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group
|
||||
seq_colim succ_str EM EM.ops function
|
||||
|
||||
|
@ -98,7 +98,7 @@ namespace spectrum
|
|||
| succ_str.of_nat zero := z
|
||||
| succ_str.of_nat (succ k) := S (succ_str.of_nat k)
|
||||
|
||||
definition psp_of_gen_indexed [constructor] {N : succ_str} (z : N) (E : gen_prespectrum N) : gen_prespectrum +ℤ :=
|
||||
definition psp_of_gen_indexed [constructor] {N : succ_str} (z : N) (E : gen_prespectrum N) : prespectrum :=
|
||||
psp_of_nat_indexed (gen_prespectrum.mk (λn, E (succ_str.of_nat z n)) (λn, gen_prespectrum.glue E (succ_str.of_nat z n)))
|
||||
|
||||
definition is_spectrum_of_gen_indexed [instance] {N : succ_str} (z : N) (E : gen_prespectrum N) [H : is_spectrum E]
|
||||
|
@ -277,20 +277,26 @@ namespace spectrum
|
|||
|
||||
/- homotopy group of a prespectrum -/
|
||||
|
||||
definition pshomotopy_group (n : ℤ) (E : prespectrum) : AbGroup :=
|
||||
group.seq_colim (λ(k : ℕ), πag[k+2] (E (-n - 2 + k)))
|
||||
definition pshomotopy_group_hom (n : ℤ) (E : prespectrum) (k : ℕ)
|
||||
: πag[k + 2] (E (-n - 2 + k)) →g πag[k + 3] (E (-n - 2 + (k + 1))) :=
|
||||
begin
|
||||
intro k,
|
||||
refine _ ∘ π→g[k+2] (glue E _),
|
||||
refine (homotopy_group_succ_in _ (k+2))⁻¹ᵉ* ∘ _,
|
||||
refine homotopy_group_pequiv (k+2) (loop_pequiv_loop (pequiv_of_eq (ap E !add.assoc)))
|
||||
refine _ ∘g π→g[k+2] (glue E _),
|
||||
refine (ghomotopy_group_succ_in _ (k+1))⁻¹ᵍ ∘g _,
|
||||
refine homotopy_group_isomorphism_of_pequiv (k+1)
|
||||
(loop_pequiv_loop (pequiv_of_eq (ap E !add.assoc)))
|
||||
end
|
||||
|
||||
definition pshomotopy_group (n : ℤ) (E : prespectrum) : AbGroup :=
|
||||
group.seq_colim (λ(k : ℕ), πag[k+2] (E (-n - 2 + k))) (pshomotopy_group_hom n E)
|
||||
|
||||
notation `πₚₛ[`:95 n:0 `]`:0 := pshomotopy_group n
|
||||
|
||||
definition pshomotopy_group_fun (n : ℤ) {E F : prespectrum} (f : E →ₛ F) :
|
||||
πₚₛ[n] E →g πₚₛ[n] F :=
|
||||
sorry --group.seq_colim_functor _ _
|
||||
group.seq_colim_functor (λk, π→g[k+2] (f (-n - 2 +[ℤ] k)))
|
||||
begin
|
||||
exact sorry
|
||||
end
|
||||
|
||||
notation `πₚₛ→[`:95 n:0 `]`:0 := pshomotopy_group_fun n
|
||||
|
||||
|
@ -607,5 +613,17 @@ spectrify_fun (smash_prespectrum_fun f g)
|
|||
definition EM_spectrum /-[constructor]-/ (G : AbGroup) : spectrum :=
|
||||
spectrum.Mk (K G) (λn, (loop_EM G n)⁻¹ᵉ*)
|
||||
|
||||
/- Wedge of prespectra -/
|
||||
|
||||
open fwedge
|
||||
|
||||
definition fwedge_prespectrum.{u v} {I : Type.{v}} (X : I -> prespectrum.{u}) : prespectrum.{max u v} :=
|
||||
begin
|
||||
fconstructor,
|
||||
{ intro n, exact fwedge (λ i, X i n) },
|
||||
{ intro n, fapply fwedge_pmap,
|
||||
intro i, exact Ω→ !pinl ∘* !glue
|
||||
}
|
||||
end
|
||||
|
||||
end spectrum
|
||||
|
|
Loading…
Reference in a new issue