First Isomorphism Theorem for AbGroups

with prelim.s
This commit is contained in:
Steve Awodey 2016-12-08 16:20:14 -05:00
parent 8d586d587b
commit c814534104
3 changed files with 70 additions and 21 deletions

View file

@ -6,7 +6,7 @@ Authors: Floris van Doorn, Egbert Rijke
Constructions with groups
-/
import hit.set_quotient .subgroup
import hit.set_quotient .subgroup ..move_to_lib
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod trunc function equiv
@ -149,7 +149,7 @@ namespace group
exact λ g h, idp
end
definition surjective_ab_qg_map {A : AbGroup} (N : subgroup_rel A) : is_surjective (ab_qg_map N) :=
definition is_surjective_ab_qg_map {A : AbGroup} (N : subgroup_rel A) : is_surjective (ab_qg_map N) :=
begin
intro x, induction x,
fapply image.mk,
@ -261,10 +261,18 @@ definition kernel_quotient_extension_triangle {A B : AbGroup} (f : A →g B) :
apply quotient_group_compute
end
definition embedding_kernel_quotient_extension {A B : AbGroup} (f : A →g B) :
definition is_embedding_kernel_quotient_extension {A B : AbGroup} (f : A →g B) :
is_embedding (kernel_quotient_extension f) :=
begin
fapply is_embedding_homomorphism,
intro x,
note H := is_surjective_ab_qg_map (kernel_subgroup f) x,
induction H, induction p,
intro q,
apply qg_map_eq_one,
refine _ ⬝ q,
symmetry,
rexact kernel_quotient_extension_triangle f a
end
definition ab_group_quotient_homomorphism (A B : AbGroup)(K : subgroup_rel A)(L : subgroup_rel B) (f : A →g B)
@ -337,36 +345,39 @@ definition ab_group_kernel_quotient_to_image {A B : AbGroup} (f : A →g B)
apply iff.mpr (ab_group_kernel_image_lift _ _ f a) p
end
definition ab_group_kernel_quotient_to_image_triangle {A B : AbGroup} (f : A →g B)
: image_incl f ∘g ab_group_kernel_quotient_to_image f ~ kernel_quotient_extension f :=
begin
intro x,
induction x,
reflexivity,
fapply is_prop.elimo
end
definition is_surjective_kernel_quotient_to_image {A B : AbGroup} (f : A →g B)
: is_surjective (ab_group_kernel_quotient_to_image f) :=
begin
intro b, exact sorry
-- have H : is_surjective (image_lift f)
fapply @is_surjective_factor A _ (image f) _ _ _ (group_fun (ab_qg_map (kernel_subgroup f))),
exact image_lift f,
apply quotient_group_compute,
exact is_surjective_image_lift f
end
definition is_embedding_kernel_quotient_to_image {A B : AbGroup} (f : A →g B)
: is_embedding (ab_group_kernel_quotient_to_image f) :=
begin
fapply @is_embedding_factor _ (image f) B _ _ _ (ab_group_kernel_quotient_to_image f) (image_incl f) (kernel_quotient_extension f),
exact ab_group_kernel_quotient_to_image_triangle f,
exact is_embedding_kernel_quotient_extension f
end
definition ab_group_first_iso_thm (A B : AbGroup) (f : A →g B) : quotient_ab_group (kernel_subgroup f) ≃g ab_image f :=
begin
fapply isomorphism.mk,
fapply quotient_group_elim,
fapply image_lift,
intro a,
intro k,
fapply image_incl_eq_one,
exact k,
exact sorry,
-- show that the above map is injective and surjective.
exact ab_group_kernel_quotient_to_image f,
fapply is_equiv_of_is_surjective_of_is_embedding,
exact is_embedding_kernel_quotient_to_image f,
exact is_surjective_kernel_quotient_to_image f
end

View file

@ -302,6 +302,14 @@ namespace group
exact g, reflexivity
end
definition is_surjective_image_lift {G H : Group} (f : G →g H) : is_surjective (image_lift f) :=
begin
intro h,
induction h with h p, induction p with x, induction x with g p,
fapply image.mk,
exact g, induction p, reflexivity
end
definition image_factor {G H : Group} (f : G →g H) : f = (image_incl f) ∘g (image_lift f) :=
begin
fapply homomorphism_eq,

View file

@ -135,3 +135,33 @@ definition image_pathover {A B : Type} (f : A → B) {x y : B} (p : x = y) (u :
begin
apply is_prop.elimo
end
section injective_surjective
open trunc fiber image
variables {A B C : Type} [is_set A] [is_set B] [is_set C] (f : A → B) (g : B → C) (h : A → C) (H : g ∘ f ~ h)
include H
definition is_embedding_factor : is_embedding h → is_embedding f :=
begin
induction H using homotopy.rec_on_idp,
intro E,
fapply is_embedding_of_is_injective,
intro x y p,
fapply @is_injective_of_is_embedding _ _ _ E _ _ (ap g p)
end
definition is_surjective_factor : is_surjective h → is_surjective g :=
begin
induction H using homotopy.rec_on_idp,
intro S,
intro c,
note p := S c,
induction p,
apply tr,
fapply fiber.mk,
exact f a,
exact p
end
end injective_surjective