From cde8333151edc739f0a509ed5a7576a3e1bafd4d Mon Sep 17 00:00:00 2001 From: Egbert Rijke Date: Thu, 26 Jan 2017 17:44:37 -0500 Subject: [PATCH] short exact sequences --- algebra/exact_couple.hlean | 22 ++++++++++++++++------ 1 file changed, 16 insertions(+), 6 deletions(-) diff --git a/algebra/exact_couple.hlean b/algebra/exact_couple.hlean index 15cd8f2..ecf0491 100644 --- a/algebra/exact_couple.hlean +++ b/algebra/exact_couple.hlean @@ -13,7 +13,7 @@ open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum structure is_exact {A B C : AbGroup} (f : A →g B) (g : B →g C) := ( im_in_ker : Π(a:A), g (f a) = 1) - ( ker_in_im : Π(b:B), (g b = 1) → ∃(a:A), f a = b) + ( ker_in_im : Π(b:B), (g b = 1) → image_subgroup f b) structure SES (A B C : AbGroup) := ( f : A →g B) @@ -29,16 +29,26 @@ structure hom_SES {A B C A' B' C' : AbGroup} (ses : SES A B C) (ses' : SES A' B' ( htpy1 : hB ∘g (SES.f ses) ~ (SES.f ses') ∘g hA) ( htpy2 : hC ∘g (SES.g ses) ~ (SES.g ses') ∘g hB) -definition quotient_SES {A B C : AbGroup} (ses : SES A B C) : C ≃g quotient_ab_group (image_subgroup (SES.f ses)) := - begin - fapply ab_group_first_iso_thm B C (SES.g ses), - end +--definition quotient_SES {A B C : AbGroup} (ses : SES A B C) : +-- quotient_ab_group (image_subgroup (SES.f ses)) ≃g C := +-- begin +-- fapply ab_group_first_iso_thm B C (SES.g ses), +-- end definition right_extend_SES {A B C A' B' C' : AbGroup} (ses : SES A B C) (ses' : SES A' B' C') (hA : A →g A') (hB : B →g B') (htpy1 : hB ∘g (SES.f ses) ~ (SES.f ses') ∘g hA) : C →g C' := begin - + refine _ ∘g (codomain_surjection_is_quotient (SES.g ses) (SES.Hg ses))⁻¹ᵍ, + refine (codomain_surjection_is_quotient (SES.g ses') (SES.Hg ses')) ∘g _, + fapply ab_group_quotient_homomorphism B B' (kernel_subgroup (SES.g ses)) (kernel_subgroup (SES.g ses')) hB, + intro b, + intro K, + have k : trunctype.carrier (image_subgroup (SES.f ses) b), from is_exact.ker_in_im (SES.ex ses) b K, + induction k, induction a with a p, + rewrite [p⁻¹], + rewrite [htpy1 a], + fapply is_exact.im_in_ker (SES.ex ses') (hA a), end definition is_differential {B : AbGroup} (d : B →g B) := Π(b:B), d (d b) = 1