Add Hpwedge.
This commit is contained in:
parent
9cfc13d4cf
commit
d057ddec51
3 changed files with 56 additions and 10 deletions
|
@ -186,10 +186,11 @@ end group
|
||||||
|
|
||||||
namespace group
|
namespace group
|
||||||
|
|
||||||
definition dirsum_down_left.{u v} {I : Type.{u}} [is_set I] {Y : I → AbGroup}
|
definition dirsum_down_left.{u v w} {I : Type.{u}} [is_set I] (Y : I → AbGroup.{w})
|
||||||
: dirsum (Y ∘ down.{u v}) ≃g dirsum Y :=
|
: dirsum (Y ∘ down.{u v}) ≃g dirsum Y :=
|
||||||
|
proof
|
||||||
let to_hom := @dirsum_functor_left _ _ _ _ Y down.{u v} in
|
let to_hom := @dirsum_functor_left _ _ _ _ Y down.{u v} in
|
||||||
let from_hom := dirsum_elim (λi, dirsum_incl (Y ∘ down) (up i)) in
|
let from_hom := dirsum_elim (λi, dirsum_incl (Y ∘ down.{u v}) (up.{u v} i)) in
|
||||||
begin
|
begin
|
||||||
fapply isomorphism.mk,
|
fapply isomorphism.mk,
|
||||||
{ exact to_hom },
|
{ exact to_hom },
|
||||||
|
@ -200,19 +201,20 @@ namespace group
|
||||||
refine @dirsum_homotopy I _ Y (dirsum Y) (to_hom ∘g from_hom) !gid _ ds,
|
refine @dirsum_homotopy I _ Y (dirsum Y) (to_hom ∘g from_hom) !gid _ ds,
|
||||||
intro i y,
|
intro i y,
|
||||||
refine homomorphism_comp_compute to_hom from_hom _ ⬝ _,
|
refine homomorphism_comp_compute to_hom from_hom _ ⬝ _,
|
||||||
refine ap to_hom (dirsum_elim_compute (λi, dirsum_incl (Y ∘ down) (up i)) i y) ⬝ _,
|
refine ap to_hom (dirsum_elim_compute (λi, dirsum_incl (Y ∘ down.{u v}) (up.{u v} i)) i y) ⬝ _,
|
||||||
refine dirsum_elim_compute _ (up i) y ⬝ _,
|
refine dirsum_elim_compute _ (up.{u v} i) y ⬝ _,
|
||||||
reflexivity
|
reflexivity
|
||||||
},
|
},
|
||||||
{ intro ds,
|
{ intro ds,
|
||||||
refine (homomorphism_comp_compute from_hom to_hom ds)⁻¹ ⬝ _,
|
refine (homomorphism_comp_compute from_hom to_hom ds)⁻¹ ⬝ _,
|
||||||
refine @dirsum_homotopy _ _ (Y ∘ down) (dirsum (Y ∘ down)) (from_hom ∘g to_hom) !gid _ ds,
|
refine @dirsum_homotopy _ _ (Y ∘ down.{u v}) (dirsum (Y ∘ down.{u v})) (from_hom ∘g to_hom) !gid _ ds,
|
||||||
intro i y, induction i with i,
|
intro i y, induction i with i,
|
||||||
refine homomorphism_comp_compute from_hom to_hom _ ⬝ _,
|
refine homomorphism_comp_compute from_hom to_hom _ ⬝ _,
|
||||||
refine ap from_hom (dirsum_elim_compute (λi, dirsum_incl Y (down i)) (up i) y) ⬝ _,
|
refine ap from_hom (dirsum_elim_compute (λi, dirsum_incl Y (down.{u v} i)) (up.{u v} i) y) ⬝ _,
|
||||||
refine dirsum_elim_compute _ i y ⬝ _,
|
refine dirsum_elim_compute _ i y ⬝ _,
|
||||||
reflexivity
|
reflexivity
|
||||||
}
|
}
|
||||||
end
|
end
|
||||||
|
qed
|
||||||
|
|
||||||
end group
|
end group
|
||||||
|
|
|
@ -31,7 +31,8 @@ namespace homology
|
||||||
(Hdimension : Π(n : ℤ), n ≠ 0 → is_contr (HH n (plift (psphere 0))))
|
(Hdimension : Π(n : ℤ), n ≠ 0 → is_contr (HH n (plift (psphere 0))))
|
||||||
|
|
||||||
section
|
section
|
||||||
parameter (theory : homology_theory)
|
universe variable u
|
||||||
|
parameter (theory : homology_theory.{u})
|
||||||
open homology_theory
|
open homology_theory
|
||||||
|
|
||||||
theorem HH_base_indep (n : ℤ) {A : Type} (a b : A)
|
theorem HH_base_indep (n : ℤ) {A : Type} (a b : A)
|
||||||
|
@ -78,13 +79,54 @@ namespace homology
|
||||||
}
|
}
|
||||||
end
|
end
|
||||||
|
|
||||||
|
definition Hadditive_equiv (n : ℤ) {I : Type} [is_set I] (X : I → Type*)
|
||||||
|
: dirsum (λi, HH theory n (X i)) ≃g HH theory n (⋁ X) :=
|
||||||
|
isomorphism.mk (dirsum_elim (λi, Hh theory n (fwedge.pinl i))) (Hadditive theory n X)
|
||||||
|
|
||||||
|
definition Hadditive' (n : ℤ) {I : Type₀} [is_set I] (X : I → pType.{u}) : is_equiv
|
||||||
|
(dirsum_elim (λi, Hh theory n (pinl i)) : dirsum (λi, HH theory n (X i)) → HH theory n (⋁ X)) :=
|
||||||
|
let iso3 := HH_isomorphism n (fwedge_down_left.{0 u} X) in
|
||||||
|
let iso2 := Hadditive_equiv n (X ∘ down.{0 u}) in
|
||||||
|
let iso1 := (dirsum_down_left.{0 u} (λ i, HH theory n (X i)))⁻¹ᵍ in
|
||||||
|
let iso := calc dirsum (λ i, HH theory n (X i))
|
||||||
|
≃g dirsum (λ i, HH theory n (X (down.{0 u} i))) : by exact iso1
|
||||||
|
... ≃g HH theory n (⋁ (X ∘ down.{0 u})) : by exact iso2
|
||||||
|
... ≃g HH theory n (⋁ X) : by exact iso3
|
||||||
|
in
|
||||||
|
begin
|
||||||
|
fapply is_equiv_of_equiv_of_homotopy,
|
||||||
|
{ exact equiv_of_isomorphism iso },
|
||||||
|
{ refine dirsum_homotopy _, intro i y,
|
||||||
|
refine homomorphism_comp_compute iso3 (iso2 ∘g iso1) _ ⬝ _,
|
||||||
|
refine ap iso3 (homomorphism_comp_compute iso2 iso1 _) ⬝ _,
|
||||||
|
refine ap (iso3 ∘ iso2) _ ⬝ _,
|
||||||
|
{ exact dirsum_incl (λ i, HH theory n (X (down i))) (up i) y },
|
||||||
|
{ refine _ ⬝ dirsum_elim_compute (λi, dirsum_incl (λ i, HH theory n (X (down.{0 u} i))) (up i)) i y,
|
||||||
|
reflexivity
|
||||||
|
},
|
||||||
|
refine ap iso3 _ ⬝ _,
|
||||||
|
{ exact Hh theory n (fwedge.pinl (up i)) y },
|
||||||
|
{ refine _ ⬝ dirsum_elim_compute (λi, Hh theory n (fwedge.pinl i)) (up i) y,
|
||||||
|
reflexivity
|
||||||
|
},
|
||||||
|
refine (Hpcompose theory n (fwedge_down_left X) (fwedge.pinl (up i)) y)⁻¹ ⬝ _,
|
||||||
|
refine Hh_homotopy n (fwedge_down_left.{0 u} X ∘* fwedge.pinl (up i)) (fwedge.pinl i) (fwedge_pmap_beta (λ i, pinl (down i)) (up i)) y ⬝ _,
|
||||||
|
refine (dirsum_elim_compute (λ i, Hh theory n (pinl i)) i y)⁻¹
|
||||||
|
}
|
||||||
|
end
|
||||||
|
|
||||||
|
definition Hadditive'_equiv (n : ℤ) {I : Type₀} [is_set I] (X : I → Type*)
|
||||||
|
: dirsum (λi, HH theory n (X i)) ≃g HH theory n (⋁ X) :=
|
||||||
|
isomorphism.mk (dirsum_elim (λi, Hh theory n (fwedge.pinl i))) (Hadditive' n X)
|
||||||
|
|
||||||
definition Hfwedge (n : ℤ) {I : Type} [is_set I] (X : I → Type*): HH theory n (⋁ X) ≃g dirsum (λi, HH theory n (X i)) :=
|
definition Hfwedge (n : ℤ) {I : Type} [is_set I] (X : I → Type*): HH theory n (⋁ X) ≃g dirsum (λi, HH theory n (X i)) :=
|
||||||
(isomorphism.mk _ (Hadditive theory n X))⁻¹ᵍ
|
(isomorphism.mk _ (Hadditive theory n X))⁻¹ᵍ
|
||||||
|
|
||||||
definition Hpwedge (n : ℤ) (A B : Type*) : HH theory n (pwedge A B) ≃g HH theory n A ×g HH theory n B :=
|
definition Hpwedge (n : ℤ) (A B : Type*) : HH theory n (pwedge A B) ≃g HH theory n A ×g HH theory n B :=
|
||||||
calc HH theory n (pwedge A B) ≃g HH theory n (fwedge (bool.rec A B)) : by exact sorry
|
calc HH theory n (A ∨ B) ≃g HH theory n (⋁ (bool.rec A B)) : by exact HH_isomorphism n (pwedge_pequiv_fwedge A B)
|
||||||
... ≃g dirsum (λb, HH theory n (bool.rec A B b)) : by exact sorry
|
... ≃g dirsum (λb, HH theory n (bool.rec A B b)) : by exact (Hadditive'_equiv n (bool.rec A B))⁻¹ᵍ
|
||||||
... ≃g HH theory n A ×g HH theory n B : by exact sorry
|
... ≃g dirsum (bool.rec (HH theory n A) (HH theory n B)) : by exact dirsum_isomorphism (bool.rec !isomorphism.refl !isomorphism.refl)
|
||||||
|
... ≃g HH theory n A ×g HH theory n B : by exact binary_dirsum (HH theory n A) (HH theory n B)
|
||||||
|
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
|
@ -232,6 +232,7 @@ namespace fwedge
|
||||||
... ≃* ⋁ (λ i, plift.{u v} (F i)) : by exact fwedge_pequiv (λ i, !pequiv_plift)
|
... ≃* ⋁ (λ i, plift.{u v} (F i)) : by exact fwedge_pequiv (λ i, !pequiv_plift)
|
||||||
|
|
||||||
definition fwedge_down_left.{u v} {I : Type} (F : I → pType) : ⋁ (F ∘ down.{u v}) ≃* ⋁ F :=
|
definition fwedge_down_left.{u v} {I : Type} (F : I → pType) : ⋁ (F ∘ down.{u v}) ≃* ⋁ F :=
|
||||||
|
proof
|
||||||
let pto := @fwedge_pmap (lift.{u v} I) (F ∘ down) (⋁ F) (λ i, pinl (down i)) in
|
let pto := @fwedge_pmap (lift.{u v} I) (F ∘ down) (⋁ F) (λ i, pinl (down i)) in
|
||||||
let pfrom := @fwedge_pmap I F (⋁ (F ∘ down.{u v})) (λ i, pinl (up.{u v} i)) in
|
let pfrom := @fwedge_pmap I F (⋁ (F ∘ down.{u v})) (λ i, pinl (up.{u v} i)) in
|
||||||
begin
|
begin
|
||||||
|
@ -257,5 +258,6 @@ namespace fwedge
|
||||||
}
|
}
|
||||||
|
|
||||||
end
|
end
|
||||||
|
qed
|
||||||
|
|
||||||
end fwedge
|
end fwedge
|
||||||
|
|
Loading…
Reference in a new issue