Add Hpwedge.

This commit is contained in:
favonia 2017-06-09 15:00:56 -06:00
parent 9cfc13d4cf
commit d057ddec51
3 changed files with 56 additions and 10 deletions

View file

@ -186,10 +186,11 @@ end group
namespace group namespace group
definition dirsum_down_left.{u v} {I : Type.{u}} [is_set I] {Y : I → AbGroup} definition dirsum_down_left.{u v w} {I : Type.{u}} [is_set I] (Y : I → AbGroup.{w})
: dirsum (Y ∘ down.{u v}) ≃g dirsum Y := : dirsum (Y ∘ down.{u v}) ≃g dirsum Y :=
proof
let to_hom := @dirsum_functor_left _ _ _ _ Y down.{u v} in let to_hom := @dirsum_functor_left _ _ _ _ Y down.{u v} in
let from_hom := dirsum_elim (λi, dirsum_incl (Y ∘ down) (up i)) in let from_hom := dirsum_elim (λi, dirsum_incl (Y ∘ down.{u v}) (up.{u v} i)) in
begin begin
fapply isomorphism.mk, fapply isomorphism.mk,
{ exact to_hom }, { exact to_hom },
@ -200,19 +201,20 @@ namespace group
refine @dirsum_homotopy I _ Y (dirsum Y) (to_hom ∘g from_hom) !gid _ ds, refine @dirsum_homotopy I _ Y (dirsum Y) (to_hom ∘g from_hom) !gid _ ds,
intro i y, intro i y,
refine homomorphism_comp_compute to_hom from_hom _ ⬝ _, refine homomorphism_comp_compute to_hom from_hom _ ⬝ _,
refine ap to_hom (dirsum_elim_compute (λi, dirsum_incl (Y ∘ down) (up i)) i y) ⬝ _, refine ap to_hom (dirsum_elim_compute (λi, dirsum_incl (Y ∘ down.{u v}) (up.{u v} i)) i y) ⬝ _,
refine dirsum_elim_compute _ (up i) y ⬝ _, refine dirsum_elim_compute _ (up.{u v} i) y ⬝ _,
reflexivity reflexivity
}, },
{ intro ds, { intro ds,
refine (homomorphism_comp_compute from_hom to_hom ds)⁻¹ ⬝ _, refine (homomorphism_comp_compute from_hom to_hom ds)⁻¹ ⬝ _,
refine @dirsum_homotopy _ _ (Y ∘ down) (dirsum (Y ∘ down)) (from_hom ∘g to_hom) !gid _ ds, refine @dirsum_homotopy _ _ (Y ∘ down.{u v}) (dirsum (Y ∘ down.{u v})) (from_hom ∘g to_hom) !gid _ ds,
intro i y, induction i with i, intro i y, induction i with i,
refine homomorphism_comp_compute from_hom to_hom _ ⬝ _, refine homomorphism_comp_compute from_hom to_hom _ ⬝ _,
refine ap from_hom (dirsum_elim_compute (λi, dirsum_incl Y (down i)) (up i) y) ⬝ _, refine ap from_hom (dirsum_elim_compute (λi, dirsum_incl Y (down.{u v} i)) (up.{u v} i) y) ⬝ _,
refine dirsum_elim_compute _ i y ⬝ _, refine dirsum_elim_compute _ i y ⬝ _,
reflexivity reflexivity
} }
end end
qed
end group end group

View file

@ -31,7 +31,8 @@ namespace homology
(Hdimension : Π(n : ), n ≠ 0 → is_contr (HH n (plift (psphere 0)))) (Hdimension : Π(n : ), n ≠ 0 → is_contr (HH n (plift (psphere 0))))
section section
parameter (theory : homology_theory) universe variable u
parameter (theory : homology_theory.{u})
open homology_theory open homology_theory
theorem HH_base_indep (n : ) {A : Type} (a b : A) theorem HH_base_indep (n : ) {A : Type} (a b : A)
@ -78,13 +79,54 @@ namespace homology
} }
end end
definition Hadditive_equiv (n : ) {I : Type} [is_set I] (X : I → Type*)
: dirsum (λi, HH theory n (X i)) ≃g HH theory n ( X) :=
isomorphism.mk (dirsum_elim (λi, Hh theory n (fwedge.pinl i))) (Hadditive theory n X)
definition Hadditive' (n : ) {I : Type₀} [is_set I] (X : I → pType.{u}) : is_equiv
(dirsum_elim (λi, Hh theory n (pinl i)) : dirsum (λi, HH theory n (X i)) → HH theory n ( X)) :=
let iso3 := HH_isomorphism n (fwedge_down_left.{0 u} X) in
let iso2 := Hadditive_equiv n (X ∘ down.{0 u}) in
let iso1 := (dirsum_down_left.{0 u} (λ i, HH theory n (X i)))⁻¹ᵍ in
let iso := calc dirsum (λ i, HH theory n (X i))
≃g dirsum (λ i, HH theory n (X (down.{0 u} i))) : by exact iso1
... ≃g HH theory n ( (X ∘ down.{0 u})) : by exact iso2
... ≃g HH theory n ( X) : by exact iso3
in
begin
fapply is_equiv_of_equiv_of_homotopy,
{ exact equiv_of_isomorphism iso },
{ refine dirsum_homotopy _, intro i y,
refine homomorphism_comp_compute iso3 (iso2 ∘g iso1) _ ⬝ _,
refine ap iso3 (homomorphism_comp_compute iso2 iso1 _) ⬝ _,
refine ap (iso3 ∘ iso2) _ ⬝ _,
{ exact dirsum_incl (λ i, HH theory n (X (down i))) (up i) y },
{ refine _ ⬝ dirsum_elim_compute (λi, dirsum_incl (λ i, HH theory n (X (down.{0 u} i))) (up i)) i y,
reflexivity
},
refine ap iso3 _ ⬝ _,
{ exact Hh theory n (fwedge.pinl (up i)) y },
{ refine _ ⬝ dirsum_elim_compute (λi, Hh theory n (fwedge.pinl i)) (up i) y,
reflexivity
},
refine (Hpcompose theory n (fwedge_down_left X) (fwedge.pinl (up i)) y)⁻¹ ⬝ _,
refine Hh_homotopy n (fwedge_down_left.{0 u} X ∘* fwedge.pinl (up i)) (fwedge.pinl i) (fwedge_pmap_beta (λ i, pinl (down i)) (up i)) y ⬝ _,
refine (dirsum_elim_compute (λ i, Hh theory n (pinl i)) i y)⁻¹
}
end
definition Hadditive'_equiv (n : ) {I : Type₀} [is_set I] (X : I → Type*)
: dirsum (λi, HH theory n (X i)) ≃g HH theory n ( X) :=
isomorphism.mk (dirsum_elim (λi, Hh theory n (fwedge.pinl i))) (Hadditive' n X)
definition Hfwedge (n : ) {I : Type} [is_set I] (X : I → Type*): HH theory n ( X) ≃g dirsum (λi, HH theory n (X i)) := definition Hfwedge (n : ) {I : Type} [is_set I] (X : I → Type*): HH theory n ( X) ≃g dirsum (λi, HH theory n (X i)) :=
(isomorphism.mk _ (Hadditive theory n X))⁻¹ᵍ (isomorphism.mk _ (Hadditive theory n X))⁻¹ᵍ
definition Hpwedge (n : ) (A B : Type*) : HH theory n (pwedge A B) ≃g HH theory n A ×g HH theory n B := definition Hpwedge (n : ) (A B : Type*) : HH theory n (pwedge A B) ≃g HH theory n A ×g HH theory n B :=
calc HH theory n (pwedge A B) ≃g HH theory n (fwedge (bool.rec A B)) : by exact sorry calc HH theory n (A B) ≃g HH theory n ( (bool.rec A B)) : by exact HH_isomorphism n (pwedge_pequiv_fwedge A B)
... ≃g dirsum (λb, HH theory n (bool.rec A B b)) : by exact sorry ... ≃g dirsum (λb, HH theory n (bool.rec A B b)) : by exact (Hadditive'_equiv n (bool.rec A B))⁻¹ᵍ
... ≃g HH theory n A ×g HH theory n B : by exact sorry ... ≃g dirsum (bool.rec (HH theory n A) (HH theory n B)) : by exact dirsum_isomorphism (bool.rec !isomorphism.refl !isomorphism.refl)
... ≃g HH theory n A ×g HH theory n B : by exact binary_dirsum (HH theory n A) (HH theory n B)
end end

View file

@ -232,6 +232,7 @@ namespace fwedge
... ≃* (λ i, plift.{u v} (F i)) : by exact fwedge_pequiv (λ i, !pequiv_plift) ... ≃* (λ i, plift.{u v} (F i)) : by exact fwedge_pequiv (λ i, !pequiv_plift)
definition fwedge_down_left.{u v} {I : Type} (F : I → pType) : (F ∘ down.{u v}) ≃* F := definition fwedge_down_left.{u v} {I : Type} (F : I → pType) : (F ∘ down.{u v}) ≃* F :=
proof
let pto := @fwedge_pmap (lift.{u v} I) (F ∘ down) ( F) (λ i, pinl (down i)) in let pto := @fwedge_pmap (lift.{u v} I) (F ∘ down) ( F) (λ i, pinl (down i)) in
let pfrom := @fwedge_pmap I F ( (F ∘ down.{u v})) (λ i, pinl (up.{u v} i)) in let pfrom := @fwedge_pmap I F ( (F ∘ down.{u v})) (λ i, pinl (up.{u v} i)) in
begin begin
@ -257,5 +258,6 @@ namespace fwedge
} }
end end
qed
end fwedge end fwedge