starting to think about equivalences of prespectra
This commit is contained in:
parent
2092e4a83b
commit
d3f42e5a3c
1 changed files with 25 additions and 1 deletions
|
@ -228,6 +228,30 @@ namespace spectrum
|
|||
definition shomotopy_to_incoh [coercion] {N : succ_str} {E F : gen_prespectrum N} {f g : E →ₛ F} (p : f ~ₛ g) : shomotopy_incoh f g :=
|
||||
shomotopy_incoh.mk (λn, (shomotopy.to_phomotopy p) n)
|
||||
|
||||
------------------------------
|
||||
-- Equivalences of prespectra
|
||||
------------------------------
|
||||
|
||||
structure is_sequiv {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) : Type :=
|
||||
(to_linv : F →ₛ E)
|
||||
(is_retr : to_linv ∘ₛf ~ₛ sid E)
|
||||
(to_rinv : F →ₛ E)
|
||||
(is_sec : f ∘ₛ to_rinv ~ₛ sid F)
|
||||
|
||||
structure sequiv {N : succ_str} (E F : gen_prespectrum N) : Type :=
|
||||
(to_fun : E →ₛ F)
|
||||
(to_is_sequiv : is_sequiv to_fun)
|
||||
|
||||
infix ` ≃ₛ ` : 25 := sequiv
|
||||
|
||||
definition is_sequiv_of_smap {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) (H : Π (n : N), is_equiv (f n)) : is_sequiv f :=
|
||||
begin
|
||||
repeat exact sorry
|
||||
end
|
||||
|
||||
-- definition is_sequiv_psimple {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) : Type :=
|
||||
-- Π (n : N), is_pequiv
|
||||
|
||||
------------------------------
|
||||
-- Suspension prespectra
|
||||
------------------------------
|
||||
|
@ -461,7 +485,7 @@ namespace spectrum
|
|||
refine (passoc (glue (gen_spectrum.to_prespectrum E) n) (pequiv.to_pmap
|
||||
(equiv_glue (gen_spectrum.to_prespectrum E) n)⁻¹ᵉ*) (Ω→ (to_fun f (S n))))⁻¹* ⬝* _,
|
||||
refine pwhisker_right (Ω→ (to_fun f (S n))) (pright_inv (equiv_glue E n)) ⬝* _,
|
||||
|
||||
refine _ ⬝* pwhisker_right (glue (prespectrify X) n) ((ap1_pcompose (pequiv.to_pmap (equiv_glue (gen_spectrum.to_prespectrum E) (S n))⁻¹ᵉ*) (Ω→ (to_fun f (S (S n)))))⁻¹*),
|
||||
repeat exact sorry
|
||||
end
|
||||
|
||||
|
|
Loading…
Reference in a new issue