add file containing proof about univalent subcategories and that AbGrp is univalent
This commit is contained in:
parent
af30b19099
commit
d8350ad125
1 changed files with 384 additions and 0 deletions
384
univalent_subcategory.hlean
Normal file
384
univalent_subcategory.hlean
Normal file
|
@ -0,0 +1,384 @@
|
||||||
|
import homotopy.sphere2 algebra.category.functor.attributes
|
||||||
|
|
||||||
|
open eq pointed sigma is_equiv equiv fiber algebra group is_trunc function prod
|
||||||
|
|
||||||
|
namespace category
|
||||||
|
|
||||||
|
definition precategory_Group.{u} [instance] [constructor] : precategory.{u+1 u} Group :=
|
||||||
|
begin
|
||||||
|
fapply precategory.mk,
|
||||||
|
{ exact λG H, G →g H },
|
||||||
|
{ exact _ },
|
||||||
|
{ exact λG H K ψ φ, ψ ∘g φ },
|
||||||
|
{ exact λG, gid G },
|
||||||
|
{ intros, apply homomorphism_eq, esimp },
|
||||||
|
{ intros, apply homomorphism_eq, esimp },
|
||||||
|
{ intros, apply homomorphism_eq, esimp }
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
definition precategory_AbGroup.{u} [instance] [constructor] : precategory.{u+1 u} AbGroup :=
|
||||||
|
begin
|
||||||
|
fapply precategory.mk,
|
||||||
|
{ exact λG H, G →g H },
|
||||||
|
{ exact _ },
|
||||||
|
{ exact λG H K ψ φ, ψ ∘g φ },
|
||||||
|
{ exact λG, gid G },
|
||||||
|
{ intros, apply homomorphism_eq, esimp },
|
||||||
|
{ intros, apply homomorphism_eq, esimp },
|
||||||
|
{ intros, apply homomorphism_eq, esimp }
|
||||||
|
end
|
||||||
|
open iso
|
||||||
|
|
||||||
|
definition Group_is_iso_of_is_equiv {G H : Group} (φ : G →g H) (H : is_equiv (group_fun φ)) :
|
||||||
|
is_iso φ :=
|
||||||
|
begin
|
||||||
|
fconstructor,
|
||||||
|
{ exact (isomorphism.mk φ H)⁻¹ᵍ },
|
||||||
|
{ apply homomorphism_eq, rexact left_inv φ },
|
||||||
|
{ apply homomorphism_eq, rexact right_inv φ }
|
||||||
|
end
|
||||||
|
|
||||||
|
definition Group_is_equiv_of_is_iso {G H : Group} (φ : G ⟶ H) (Hφ : is_iso φ) :
|
||||||
|
is_equiv (group_fun φ) :=
|
||||||
|
begin
|
||||||
|
fapply adjointify,
|
||||||
|
{ exact group_fun φ⁻¹ʰ },
|
||||||
|
{ note p := right_inverse φ, exact ap010 group_fun p },
|
||||||
|
{ note p := left_inverse φ, exact ap010 group_fun p }
|
||||||
|
end
|
||||||
|
|
||||||
|
definition Group_iso_equiv (G H : Group) : (G ≅ H) ≃ (G ≃g H) :=
|
||||||
|
begin
|
||||||
|
fapply equiv.MK,
|
||||||
|
{ intro φ, induction φ with φ φi, constructor, exact Group_is_equiv_of_is_iso φ _ },
|
||||||
|
{ intro v, induction v with φ φe, constructor, exact Group_is_iso_of_is_equiv φ _ },
|
||||||
|
{ intro v, induction v with φ φe, apply isomorphism_eq, reflexivity },
|
||||||
|
{ intro φ, induction φ with φ φi, apply iso_eq, reflexivity }
|
||||||
|
end
|
||||||
|
|
||||||
|
definition Group_props.{u} {A : Type.{u}} (v : (A → A → A) × (A → A) × A) : Prop.{u} :=
|
||||||
|
begin
|
||||||
|
induction v with m v, induction v with i o,
|
||||||
|
fapply trunctype.mk,
|
||||||
|
{ exact is_set A × (Πa, m a o = a) × (Πa, m o a = a) × (Πa b c, m (m a b) c = m a (m b c)) ×
|
||||||
|
(Πa, m (i a) a = o) },
|
||||||
|
{ apply is_trunc_of_imp_is_trunc, intro v, induction v with H v,
|
||||||
|
have is_prop (Πa, m a o = a), from _,
|
||||||
|
have is_prop (Πa, m o a = a), from _,
|
||||||
|
have is_prop (Πa b c, m (m a b) c = m a (m b c)), from _,
|
||||||
|
have is_prop (Πa, m (i a) a = o), from _,
|
||||||
|
apply is_trunc_prod }
|
||||||
|
end
|
||||||
|
|
||||||
|
definition AbGroup_props.{u} {A : Type.{u}} (v : (A → A → A) × (A → A) × A) : Prop.{u} :=
|
||||||
|
begin
|
||||||
|
induction v with m v, induction v with i o,
|
||||||
|
fapply trunctype.mk,
|
||||||
|
{ exact is_set A × (Πa, m a o = a) × (Πa, m o a = a) × (Πa b c, m (m a b) c = m a (m b c)) ×
|
||||||
|
(Πa, m (i a) a = o) × (Πa b, m a b = m b a)},
|
||||||
|
{ apply is_trunc_of_imp_is_trunc, intro v, induction v with H v,
|
||||||
|
have is_prop (Πa, m a o = a), from _,
|
||||||
|
have is_prop (Πa, m o a = a), from _,
|
||||||
|
have is_prop (Πa b c, m (m a b) c = m a (m b c)), from _,
|
||||||
|
have is_prop (Πa, m (i a) a = o), from _,
|
||||||
|
have is_prop (Πa b, m a b = m b a), from _,
|
||||||
|
apply is_trunc_prod }
|
||||||
|
end
|
||||||
|
|
||||||
|
open prod.ops
|
||||||
|
|
||||||
|
definition AbGroup_sigma.{u} : AbGroup.{u} ≃ Σ A : Type.{u}, ab_group A :=
|
||||||
|
begin repeat (assumption | induction a with a b | intro a | fconstructor) end
|
||||||
|
|
||||||
|
definition Group_sigma.{u} : Group.{u} ≃ Σ A : Type.{u}, group A :=
|
||||||
|
begin repeat (assumption | induction a with a b | intro a | fconstructor) end
|
||||||
|
|
||||||
|
definition group.sigma_char.{u} (A : Type) :
|
||||||
|
group.{u} A ≃ Σ (v : (A → A → A) × (A → A) × A), Group_props v :=
|
||||||
|
begin
|
||||||
|
fapply equiv.MK,
|
||||||
|
{intro g, induction g with m s ma o om mo i mi,
|
||||||
|
repeat (fconstructor; do 2 try assumption), },
|
||||||
|
{intro v, induction v with x v, repeat induction x with y x,
|
||||||
|
repeat induction v with x v, constructor, repeat assumption },
|
||||||
|
{ intro, repeat induction b with b x, induction x,
|
||||||
|
repeat induction x_1 with v x_1, reflexivity },
|
||||||
|
{ intro v, repeat induction v with x v, reflexivity },
|
||||||
|
end
|
||||||
|
|
||||||
|
definition Group.sigma_char2.{u} :
|
||||||
|
Group.{u} ≃ Σ(A : Type.{u}) (v : (A → A → A) × (A → A) × A), Group_props v :=
|
||||||
|
-- Group_sigma ⬝e sigma_equiv_sigma_right group.sigma_char
|
||||||
|
begin
|
||||||
|
fconstructor, intro, refine ⟨a,_⟩, apply to_fun (group.sigma_char a), exact Group.struct' a,
|
||||||
|
apply is_equiv_compose (sigma_equiv_sigma_right group.sigma_char), apply homotopy_closed Group_sigma,
|
||||||
|
intro, induction x, reflexivity
|
||||||
|
end
|
||||||
|
|
||||||
|
definition ab_group.sigma_char.{u} (A : Type) :
|
||||||
|
ab_group.{u} A ≃ Σ (v : (A → A → A) × (A → A) × A), AbGroup_props v :=
|
||||||
|
begin
|
||||||
|
fapply equiv.MK,
|
||||||
|
{intro g, induction g with m s ma o om mo i mi,
|
||||||
|
repeat (fconstructor; do 2 try assumption), },
|
||||||
|
{intro v, induction v with x v, repeat induction x with y x,
|
||||||
|
repeat induction v with x v, constructor, repeat assumption },
|
||||||
|
{ intro, repeat induction b with b x, induction x,
|
||||||
|
repeat induction x_1 with v x_1, reflexivity },
|
||||||
|
{ intro v, repeat induction v with x v, reflexivity },
|
||||||
|
end
|
||||||
|
|
||||||
|
definition AbGroup_Group_props {A : Type} (v : (A → A → A) × (A → A) × A) :
|
||||||
|
AbGroup_props v ≃ Group_props v × ∀ a b, v.1 a b = v.1 b a :=
|
||||||
|
begin
|
||||||
|
fapply equiv.MK, induction v with m v, induction v with i e,
|
||||||
|
intro, fconstructor, repeat induction a with b a, repeat (fconstructor; assumption), assumption,
|
||||||
|
exact a.2.2.2.2.2, intro, induction a, repeat induction v with b v, repeat induction a with b a,
|
||||||
|
repeat (fconstructor; assumption), assumption, intro b,
|
||||||
|
assert H : is_prop (Group_props v × ∀ a b, v.1 a b = v.1 b a),
|
||||||
|
apply is_trunc_prod, assert K : is_set A, induction b, induction v, induction a_1, induction a_2_1, assumption,
|
||||||
|
exact _, apply is_prop.elim, intro, apply is_prop.elim,
|
||||||
|
end
|
||||||
|
|
||||||
|
open sigma.ops
|
||||||
|
|
||||||
|
definition sigma_sigma_prod {A} {B C : A→Type} : (Σa, B a × C a) ≃ Σ p : (Σa, B a), C p.1 :=
|
||||||
|
sigma_equiv_sigma_right (λa, !sigma.equiv_prod⁻¹ᵉ) ⬝e !sigma_assoc_equiv
|
||||||
|
|
||||||
|
definition ab_group_group_comm (A : Type) : ab_group A ≃ Σ (g : group A), ∀ a b : A, a * b = b * a :=
|
||||||
|
begin
|
||||||
|
refine !ab_group.sigma_char ⬝e _,
|
||||||
|
refine sigma_equiv_sigma_right AbGroup_Group_props ⬝e _,
|
||||||
|
refine sigma_sigma_prod ⬝e _,
|
||||||
|
apply equiv.symm, apply sigma_equiv_sigma !group.sigma_char, intros,
|
||||||
|
induction a, reflexivity
|
||||||
|
end
|
||||||
|
|
||||||
|
open is_trunc
|
||||||
|
|
||||||
|
section
|
||||||
|
local attribute group.to_has_mul group.to_has_inv [coercion]
|
||||||
|
|
||||||
|
theorem inv_eq_of_mul_eq {A : Type} (G H : group A) (p : @mul A G ~2 @mul A H) :
|
||||||
|
@inv A G ~ @inv A H :=
|
||||||
|
begin
|
||||||
|
have foo : Π(g : A), @inv A G g = (@inv A G g * g) * @inv A H g,
|
||||||
|
from λg, !mul_inv_cancel_right⁻¹,
|
||||||
|
cases G with Gs Gm Gh1 G1 Gh2 Gh3 Gi Gh4,
|
||||||
|
cases H with Hs Hm Hh1 H1 Hh2 Hh3 Hi Hh4,
|
||||||
|
change Gi ~ Hi, intro g, have p' : Gm ~2 Hm, from p,
|
||||||
|
calc
|
||||||
|
Gi g = Hm (Hm (Gi g) g) (Hi g) : foo
|
||||||
|
... = Hm (Gm (Gi g) g) (Hi g) : by rewrite p'
|
||||||
|
... = Hm G1 (Hi g) : by rewrite Gh4
|
||||||
|
... = Gm G1 (Hi g) : by rewrite p'
|
||||||
|
... = Hi g : Gh2
|
||||||
|
end
|
||||||
|
|
||||||
|
theorem one_eq_of_mul_eq {A : Type} (G H : group A)
|
||||||
|
(p : @mul A (group.to_has_mul G) ~2 @mul A (group.to_has_mul H)) :
|
||||||
|
@one A (group.to_has_one G) = @one A (group.to_has_one H) :=
|
||||||
|
begin
|
||||||
|
cases G with Gm Gs Gh1 G1 Gh2 Gh3 Gi Gh4,
|
||||||
|
cases H with Hm Hs Hh1 H1 Hh2 Hh3 Hi Hh4,
|
||||||
|
exact (Hh2 G1)⁻¹ ⬝ (p H1 G1)⁻¹ ⬝ Gh3 H1,
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
open prod.ops
|
||||||
|
definition group_of_Group_props.{u} {A : Type.{u}} {m : A → A → A} {i : A → A} {o : A}
|
||||||
|
(H : Group_props (m, (i, o))) : group A :=
|
||||||
|
⦃group, mul := m, inv := i, one := o, is_set_carrier := H.1,
|
||||||
|
mul_one := H.2.1, one_mul := H.2.2.1, mul_assoc := H.2.2.2.1, mul_left_inv := H.2.2.2.2⦄
|
||||||
|
|
||||||
|
theorem Group_eq_equiv_lemma2 {A : Type} {m m' : A → A → A} {i i' : A → A} {o o' : A}
|
||||||
|
(H : Group_props (m, (i, o))) (H' : Group_props (m', (i', o'))) :
|
||||||
|
(m, (i, o)) = (m', (i', o')) ≃ (m ~2 m') :=
|
||||||
|
begin
|
||||||
|
have is_set A, from pr1 H,
|
||||||
|
apply equiv_of_is_prop,
|
||||||
|
{ intro p, exact apd100 (eq_pr1 p)},
|
||||||
|
{ intro p, apply prod_eq (eq_of_homotopy2 p),
|
||||||
|
apply prod_eq: esimp [Group_props] at *; esimp,
|
||||||
|
{ apply eq_of_homotopy,
|
||||||
|
exact inv_eq_of_mul_eq (group_of_Group_props H) (group_of_Group_props H') p },
|
||||||
|
{ exact one_eq_of_mul_eq (group_of_Group_props H) (group_of_Group_props H') p }}
|
||||||
|
end
|
||||||
|
|
||||||
|
open sigma.ops Group
|
||||||
|
|
||||||
|
theorem Group_eq_equiv_lemma {G H : Group}
|
||||||
|
(p : (sigma_char2 G).1 = (sigma_char2 H).1) :
|
||||||
|
((sigma_char2 G).2 =[p] (sigma_char2 H).2) ≃
|
||||||
|
(is_mul_hom (equiv_of_eq (proof p qed : Group.carrier G = Group.carrier H))) :=
|
||||||
|
begin
|
||||||
|
refine !sigma_pathover_equiv_of_is_prop ⬝e _,
|
||||||
|
induction G with G g, induction H with H h,
|
||||||
|
esimp [Group.sigma_char2] at p, induction p,
|
||||||
|
refine !pathover_idp ⬝e _,
|
||||||
|
induction g with s m ma o om mo i mi, induction h with σ μ μa ε εμ με ι μι,
|
||||||
|
exact Group_eq_equiv_lemma2 (Group.sigma_char2 (Group.mk G (group.mk s m ma o om mo i mi))).2.2
|
||||||
|
(Group.sigma_char2 (Group.mk G (group.mk σ μ μa ε εμ με ι μι))).2.2
|
||||||
|
end
|
||||||
|
|
||||||
|
definition isomorphism.sigma_char (G H : Group) : (G ≃g H) ≃ Σ(e : G ≃ H), is_mul_hom e :=
|
||||||
|
begin
|
||||||
|
fapply equiv.MK,
|
||||||
|
{ intro φ, exact ⟨equiv_of_isomorphism φ, to_respect_mul φ⟩ },
|
||||||
|
{ intro v, induction v with e p, exact isomorphism_of_equiv e p },
|
||||||
|
{ intro v, induction v with e p, induction e, reflexivity },
|
||||||
|
{ intro φ, induction φ with φ H, induction φ, reflexivity },
|
||||||
|
end
|
||||||
|
|
||||||
|
definition Group_eq_equiv (G H : Group) : G = H ≃ (G ≃g H) :=
|
||||||
|
begin
|
||||||
|
refine (eq_equiv_fn_eq_of_equiv Group.sigma_char2 G H) ⬝e _,
|
||||||
|
refine !sigma_eq_equiv ⬝e _,
|
||||||
|
refine sigma_equiv_sigma_right Group_eq_equiv_lemma ⬝e _,
|
||||||
|
transitivity (Σ(e : (Group.sigma_char2 G).1 ≃ (Group.sigma_char2 H).1),
|
||||||
|
@is_mul_hom _ _ _ _ (to_fun e)), apply sigma_ua,
|
||||||
|
exact !isomorphism.sigma_char⁻¹ᵉ
|
||||||
|
end
|
||||||
|
|
||||||
|
definition to_fun_Group_eq_equiv {G H : Group} (p : G = H)
|
||||||
|
: Group_eq_equiv G H p ~ isomorphism_of_eq p :=
|
||||||
|
begin
|
||||||
|
induction p, reflexivity
|
||||||
|
end
|
||||||
|
|
||||||
|
definition Group_eq2 {G H : Group} {p q : G = H}
|
||||||
|
(r : isomorphism_of_eq p ~ isomorphism_of_eq q) : p = q :=
|
||||||
|
begin
|
||||||
|
apply eq_of_fn_eq_fn (Group_eq_equiv G H),
|
||||||
|
apply isomorphism_eq,
|
||||||
|
intro g, refine to_fun_Group_eq_equiv p g ⬝ r g ⬝ (to_fun_Group_eq_equiv q g)⁻¹,
|
||||||
|
end
|
||||||
|
|
||||||
|
definition Group_eq_equiv_Group_iso (G₁ G₂ : Group) : G₁ = G₂ ≃ G₁ ≅ G₂ :=
|
||||||
|
Group_eq_equiv G₁ G₂ ⬝e (Group_iso_equiv G₁ G₂)⁻¹ᵉ
|
||||||
|
|
||||||
|
definition category_Group.{u} : category Group.{u} :=
|
||||||
|
category.mk precategory_Group
|
||||||
|
begin
|
||||||
|
intro G H,
|
||||||
|
apply is_equiv_of_equiv_of_homotopy (Group_eq_equiv_Group_iso G H),
|
||||||
|
intro p, induction p, fapply iso_eq, apply homomorphism_eq, reflexivity
|
||||||
|
end
|
||||||
|
|
||||||
|
open functor
|
||||||
|
|
||||||
|
section univ_functor
|
||||||
|
|
||||||
|
parameters {C : Precategory}
|
||||||
|
{D : Category}
|
||||||
|
(F : functor C D)
|
||||||
|
(p : is_embedding F) -- object part
|
||||||
|
(q : fully_faithful F)
|
||||||
|
variables {a b : carrier C}
|
||||||
|
|
||||||
|
include p q
|
||||||
|
|
||||||
|
definition ab_eq_equiv_iso : a = b ≃ a ≅ b :=
|
||||||
|
equiv.mk !ap !p -- a = b ≃ F a = F b
|
||||||
|
⬝e equiv.mk iso_of_eq !iso_of_path_equiv -- F a = F b ≃ F a ≅ F b
|
||||||
|
⬝e equiv.symm !iso_equiv_F_iso_F -- F a ≅ F b ≃ a ≅ b
|
||||||
|
|
||||||
|
definition ab_equiv_homot_iso_of_eq : @ab_eq_equiv_iso a b ~ iso_of_eq :=
|
||||||
|
begin
|
||||||
|
intro r,
|
||||||
|
esimp [ab_eq_equiv_iso],
|
||||||
|
refine _ ⬝ left_inv (iso_equiv_F_iso_F F _ _) _,
|
||||||
|
apply ap (inv (to_fun !iso_equiv_F_iso_F)),
|
||||||
|
apply symm,
|
||||||
|
induction r,
|
||||||
|
apply respect_refl
|
||||||
|
end
|
||||||
|
|
||||||
|
definition univ_domain : is_univalent C :=
|
||||||
|
begin
|
||||||
|
intros,
|
||||||
|
apply homotopy_closed ab_eq_equiv_iso ab_equiv_homot_iso_of_eq
|
||||||
|
end
|
||||||
|
end univ_functor
|
||||||
|
|
||||||
|
definition AbGroup_to_Group [constructor] : functor (Precategory.mk AbGroup _)
|
||||||
|
(Category.mk Group category_Group)
|
||||||
|
:= functor.mk (λ x : AbGroup, (x : Group))
|
||||||
|
(λ a b x, x)
|
||||||
|
(λ x, rfl)
|
||||||
|
begin intros, reflexivity end
|
||||||
|
|
||||||
|
open group
|
||||||
|
|
||||||
|
definition is_set_group (X : Type) : is_set (group X) :=
|
||||||
|
begin
|
||||||
|
apply is_trunc_of_imp_is_trunc, intros, assert H : is_set X, exact @group.is_set_carrier X a, clear a,
|
||||||
|
apply is_trunc_equiv_closed, apply equiv.symm,
|
||||||
|
apply group.sigma_char
|
||||||
|
end
|
||||||
|
|
||||||
|
definition ab_group_to_group (A : Type) (g : ab_group A) : group A := _
|
||||||
|
|
||||||
|
definition group_comm_to_group (A : Type) : (Σ g : group A, ∀ (a b : A), a*b = b*a) → group A := pr1
|
||||||
|
|
||||||
|
definition is_embedding_group_comm_to_group (A : Type) : is_embedding (group_comm_to_group A) :=
|
||||||
|
begin
|
||||||
|
unfold group_comm_to_group,
|
||||||
|
intros, induction a,
|
||||||
|
assert H : is_set A, induction a, assumption,
|
||||||
|
assert H :is_set (group A), apply is_set_group,
|
||||||
|
induction a', fconstructor, intros, apply sigma_eq,
|
||||||
|
apply is_prop.elimo, intro, esimp at *, assumption, intros,
|
||||||
|
apply is_prop.elim, intros, apply is_prop.elim, intros, apply is_prop.elim
|
||||||
|
end
|
||||||
|
|
||||||
|
definition th (A : Type) :
|
||||||
|
@ab_group_to_group A ~ group_comm_to_group A ∘ ab_group_group_comm A :=
|
||||||
|
begin intro, induction x, reflexivity end
|
||||||
|
|
||||||
|
definition is_embedding_ab_group_to_group (A : Type) : is_embedding (@ab_group_to_group A) :=
|
||||||
|
begin
|
||||||
|
apply is_embedding_homotopy_closed_rev (th A), apply is_embedding_compose,
|
||||||
|
exact is_embedding_group_comm_to_group A, apply is_embedding_of_is_equiv
|
||||||
|
end
|
||||||
|
|
||||||
|
definition sigma_emb {A} {B C : A → Type} {f : Π a, B a → C a}
|
||||||
|
: (∀ a, is_embedding (f a)) → is_embedding (total f) :=
|
||||||
|
begin
|
||||||
|
intro e, fapply is_embedding_of_is_prop_fiber, intro p, induction p with a c,
|
||||||
|
assert H : (fiber (total f) ⟨a, c⟩)≃ fiber (f a) c,
|
||||||
|
apply fiber_total_equiv,
|
||||||
|
assert H2 : is_prop (fiber (f a) c),
|
||||||
|
apply is_prop_fiber_of_is_embedding,
|
||||||
|
apply is_trunc_equiv_closed -1 (H⁻¹ᵉ),
|
||||||
|
end
|
||||||
|
|
||||||
|
definition h2 : AbGroup_to_Group ~ Group_sigma⁻¹
|
||||||
|
∘ total ab_group_to_group
|
||||||
|
∘ AbGroup_sigma :=
|
||||||
|
begin
|
||||||
|
intro g, induction g, reflexivity
|
||||||
|
end
|
||||||
|
|
||||||
|
definition is_embedding_AbGroup_to_Group : is_embedding AbGroup_to_Group :=
|
||||||
|
begin
|
||||||
|
apply is_embedding_homotopy_closed_rev h2,
|
||||||
|
apply is_embedding_compose,
|
||||||
|
apply is_embedding_of_is_equiv,
|
||||||
|
apply is_embedding_compose,
|
||||||
|
apply sigma_emb is_embedding_ab_group_to_group,
|
||||||
|
apply is_embedding_of_is_equiv
|
||||||
|
end
|
||||||
|
|
||||||
|
definition is_univalent_AbGroup : is_univalent precategory_AbGroup :=
|
||||||
|
begin
|
||||||
|
apply univ_domain AbGroup_to_Group is_embedding_AbGroup_to_Group, intros, apply is_equiv_id
|
||||||
|
end
|
||||||
|
|
||||||
|
definition category_AbGroup : category AbGroup := category.mk precategory_AbGroup is_univalent_AbGroup
|
||||||
|
|
||||||
|
definition Grp.{u} [constructor] : Category := category.Mk Group.{u} category_Group
|
||||||
|
definition AbGrp [constructor] : Category := category.Mk AbGroup category_AbGroup
|
||||||
|
|
||||||
|
end category
|
Loading…
Reference in a new issue