remove uses of homomorphism_comp_compute
making group_fun an abbreviation makes this obsolete
This commit is contained in:
parent
5d57e60a43
commit
da95ea0acb
3 changed files with 11 additions and 12 deletions
|
@ -414,10 +414,10 @@ end
|
|||
|
||||
definition dirsum : LeftModule R :=
|
||||
LeftModule_of_AddAbGroup (dirsum' N) (λr n, dirsum_smul r n)
|
||||
(λr, homomorphism.addstruct (dirsum_smul r))
|
||||
dirsum_smul_right_distrib
|
||||
dirsum_mul_smul
|
||||
dirsum_one_smul
|
||||
proof (λr, homomorphism.addstruct (dirsum_smul r)) qed
|
||||
proof dirsum_smul_right_distrib qed
|
||||
proof dirsum_mul_smul qed
|
||||
proof dirsum_one_smul qed
|
||||
|
||||
/- graded variants of left-module constructions -/
|
||||
|
||||
|
|
|
@ -47,16 +47,15 @@ namespace group
|
|||
end
|
||||
|
||||
definition seq_colim_glue {i : @trunctype.mk 0 ℕ _} {a : A i} : seq_colim_incl i a = seq_colim_incl (succ i) (f i a) :=
|
||||
begin
|
||||
refine !homomorphism_comp_compute ⬝ _,
|
||||
refine gqg_eq_of_rel _ _ ⬝ (!homomorphism_comp_compute)⁻¹,
|
||||
exact tr (seq_colim_rel.rmk _ _)
|
||||
end
|
||||
begin
|
||||
refine gqg_eq_of_rel _ _,
|
||||
exact tr (seq_colim_rel.rmk _ _)
|
||||
end
|
||||
|
||||
section
|
||||
local abbreviation h (m : seq_colim →g A') : Πi, A i →g A' := λi, m ∘g (seq_colim_incl i)
|
||||
local abbreviation k (m : seq_colim →g A') : Πi a, h m i a = h m (succ i) (f i a) :=
|
||||
λ i a, !homomorphism_comp_compute ⬝ ap m (@seq_colim_glue i a) ⬝ !homomorphism_comp_compute⁻¹
|
||||
λ i a, ap m (@seq_colim_glue i a)
|
||||
|
||||
definition seq_colim_unique (m : seq_colim →g A') :
|
||||
Πv, seq_colim_elim (h m) (k m) v = m v :=
|
||||
|
@ -77,7 +76,6 @@ namespace group
|
|||
seq_colim_elim (λi, seq_colim_incl i ∘g h i)
|
||||
begin
|
||||
intro i a,
|
||||
refine !homomorphism_comp_compute ⬝ _ ⬝ !homomorphism_comp_compute⁻¹,
|
||||
refine _ ⬝ ap (seq_colim_incl (succ i)) (p i a)⁻¹,
|
||||
apply seq_colim_glue
|
||||
end
|
||||
|
|
|
@ -277,12 +277,13 @@ begin
|
|||
end
|
||||
|
||||
variables {ψ : M₂ →lm M₃} {φ : M₁ →lm M₂} {θ : M₁ →lm M₃}
|
||||
|
||||
definition image_elim [constructor] (θ : M₁ →lm M₃) (h : Π⦃g⦄, φ g = 0 → θ g = 0) :
|
||||
image_module φ →lm M₃ :=
|
||||
begin
|
||||
refine homomorphism.mk (image_elim (group_homomorphism_of_lm_homomorphism θ) h) _,
|
||||
split,
|
||||
{ apply homomorphism.addstruct },
|
||||
{ exact homomorphism.struct (image_elim (group_homomorphism_of_lm_homomorphism θ) _) },
|
||||
{ intro r, refine @total_image.rec _ _ _ _ (λx, !is_trunc_eq) _, intro g,
|
||||
apply to_respect_smul }
|
||||
end
|
||||
|
|
Loading…
Reference in a new issue