From daf34724689d753b2dfa921db869525d7de4cc74 Mon Sep 17 00:00:00 2001 From: Yuri Sulyma Date: Thu, 8 Jun 2017 14:02:28 -0600 Subject: [PATCH] Start proving that the homology theory associated to a spectrum satisfies the ES axioms --- homology/homology.hlean | 53 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 53 insertions(+) diff --git a/homology/homology.hlean b/homology/homology.hlean index 32e79f8..ed8eeff 100644 --- a/homology/homology.hlean +++ b/homology/homology.hlean @@ -70,4 +70,57 @@ namespace homology end +/- homology theory associated to a spectrum -/ +definition homology (X : Type*) (E : spectrum) (n : ℤ) : AbGroup := +shomotopy_group n (smash_spectrum X E) + +definition parametrized_homology {X : Type*} (E : X → spectrum) (n : ℤ) : AbGroup := +sorry + +definition ordinary_homology [reducible] (X : Type*) (G : AbGroup) (n : ℤ) : AbGroup := +homology X (EM_spectrum G) n + +definition ordinary_homology_Z [reducible] (X : Type*) (n : ℤ) : AbGroup := +ordinary_homology X agℤ n + +notation `H_` n `[`:0 X:0 `, ` E:0 `]`:0 := homology X E n +notation `H_` n `[`:0 X:0 `]`:0 := ordinary_homology_Z X n +notation `pH_` n `[`:0 binders `, ` r:(scoped E, parametrized_homology E n) `]`:0 := r + +definition unpointed_homology (X : Type) (E : spectrum) (n : ℤ) : AbGroup := +H_ n[X₊, E] + +definition homology_functor [constructor] {X Y : Type*} {E F : spectrum} (f : X →* Y) (g : E →ₛ F) (n : ℤ) : homology X E n →g homology Y F n := +shomotopy_group_fun n (smash_spectrum_fun f g) + +definition homology_theory_spectrum.{u} [constructor] (E : spectrum.{u}) : homology_theory.{u} := +begin + refine homology_theory.mk _ _ _ _ _ _ _ _, + exact (λn X, H_ n[X, E]), + exact (λn X Y f, homology_functor f (sid E) n), + exact sorry, -- Hid is uninteresting but potentially very hard to prove + exact sorry, + exact sorry, + exact sorry, + exact sorry, + exact sorry + -- sorry + -- sorry + -- sorry + -- sorry + -- sorry + -- sorry +-- (λn A, H^n[A, Y]) +-- (λn A B f, cohomology_isomorphism f Y n) +-- (λn A, cohomology_isomorphism_refl A Y n) +-- (λn A B f, cohomology_functor f Y n) +-- (λn A B f g p, cohomology_functor_phomotopy p Y n) +-- (λn A B f x, cohomology_functor_phomotopy_refl f Y n x) +-- (λn A x, cohomology_functor_pid A Y n x) +-- (λn A B C g f x, cohomology_functor_pcompose g f Y n x) +-- (λn A, cohomology_psusp A Y n) +-- (λn A B f, cohomology_psusp_natural f Y n) +-- (λn A B f, cohomology_exact f Y n) +-- (λn I A H, spectrum_additive H A Y n) +end end homology