define deloopable types, define cup product
The cup product on Eilenberg Maclane spaces is now defined, but no properties are proven yet
This commit is contained in:
parent
e019097fed
commit
db8402e1af
6 changed files with 164 additions and 17 deletions
|
@ -38,6 +38,7 @@ namespace group
|
||||||
{ intro a, exact con.left_inv (f a) },
|
{ intro a, exact con.left_inv (f a) },
|
||||||
{ exact !con_left_inv_idp }},
|
{ exact !con_left_inv_idp }},
|
||||||
end
|
end
|
||||||
|
-- inf_pgroup_pequiv_closed (loop_pppi_pequiv B) _
|
||||||
|
|
||||||
definition inf_group_ppi [constructor] {A : Type*} (B : A → Type*) : inf_group (Π*a, Ω (B a)) :=
|
definition inf_group_ppi [constructor] {A : Type*} (B : A → Type*) : inf_group (Π*a, Ω (B a)) :=
|
||||||
@inf_group_of_inf_pgroup _ (inf_pgroup_pppi B)
|
@inf_group_of_inf_pgroup _ (inf_pgroup_pppi B)
|
||||||
|
@ -128,6 +129,10 @@ namespace group
|
||||||
gtrunc (gloop (Π*(a : A), B a)) ≃g gtrunc (gppi_loop B) :=
|
gtrunc (gloop (Π*(a : A), B a)) ≃g gtrunc (gppi_loop B) :=
|
||||||
proof trunc_ppi_loop_isomorphism_gen (ppi_const B) qed
|
proof trunc_ppi_loop_isomorphism_gen (ppi_const B) qed
|
||||||
|
|
||||||
|
definition gppi_loop_homomorphism_right [constructor] {A : Type*} {B B' : A → Type*}
|
||||||
|
(g : Πa, B a →* B' a) : gppi_loop B →∞g gppi_loop B' :=
|
||||||
|
gloop_ppi_isomorphism B' ∘∞g Ωg→ (pppi_compose_left g) ∘∞g (gloop_ppi_isomorphism B)⁻¹ᵍ⁸
|
||||||
|
|
||||||
|
|
||||||
/- We first define the group structure on A →* Ω B (except for truncatedness).
|
/- We first define the group structure on A →* Ω B (except for truncatedness).
|
||||||
Instead of Ω B, we could also choose any infinity group. However, we need various 2-coherences,
|
Instead of Ω B, we could also choose any infinity group. However, we need various 2-coherences,
|
||||||
|
@ -183,12 +188,30 @@ namespace group
|
||||||
definition gpmap_loop [reducible] [constructor] (A B : Type*) : InfGroup :=
|
definition gpmap_loop [reducible] [constructor] (A B : Type*) : InfGroup :=
|
||||||
InfGroup.mk (A →* Ω B) !inf_group_ppi
|
InfGroup.mk (A →* Ω B) !inf_group_ppi
|
||||||
|
|
||||||
|
definition gpmap_loopn [constructor] (n : ℕ) [H : is_succ n] (A B : Type*) : InfGroup :=
|
||||||
|
InfGroup.mk (A →** Ω[n] B) (by induction H with n; exact inf_group_ppi (λa, Ω[n] B))
|
||||||
|
|
||||||
|
definition gloop_pmap_isomorphism (A B : Type*) : Ωg (A →** B) ≃∞g gpmap_loop A B :=
|
||||||
|
gloop_ppi_isomorphism _
|
||||||
|
|
||||||
|
definition gloopn_pmap_isomorphism (n : ℕ) [H : is_succ n] (A B : Type*) :
|
||||||
|
Ωg[n] (A →** B) ≃∞g gpmap_loopn n A B :=
|
||||||
|
begin
|
||||||
|
induction H with n, induction n with n IH,
|
||||||
|
{ exact gloop_pmap_isomorphism A B },
|
||||||
|
{ rexact Ωg≃ (pequiv_of_inf_isomorphism IH) ⬝∞g gloop_pmap_isomorphism A (Ω[succ n] B) }
|
||||||
|
end
|
||||||
|
|
||||||
definition gpmap_loop' [reducible] [constructor] (A : Type*) {B C : Type*} (e : Ω C ≃* B) :
|
definition gpmap_loop' [reducible] [constructor] (A : Type*) {B C : Type*} (e : Ω C ≃* B) :
|
||||||
InfGroup :=
|
InfGroup :=
|
||||||
InfGroup.mk (A →* B)
|
InfGroup.mk (A →* B)
|
||||||
(@inf_group_of_inf_pgroup _ (inf_pgroup_pequiv_closed (ppmap_pequiv_ppmap_right e)
|
(@inf_group_of_inf_pgroup _ (inf_pgroup_pequiv_closed (ppmap_pequiv_ppmap_right e)
|
||||||
!inf_pgroup_pppi))
|
!inf_pgroup_pppi))
|
||||||
|
|
||||||
|
definition gpmap_loop_homomorphism_right [constructor] (A : Type*) {B B' : Type*}
|
||||||
|
(g : B →* B') : gpmap_loop A B →∞g gpmap_loop A B' :=
|
||||||
|
gppi_loop_homomorphism_right (λa, g)
|
||||||
|
|
||||||
definition Group_trunc_pmap [reducible] [constructor] (A B : Type*) : Group :=
|
definition Group_trunc_pmap [reducible] [constructor] (A B : Type*) : Group :=
|
||||||
Group.mk (trunc 0 (A →* Ω B)) (@group_trunc _ !inf_group_ppi)
|
Group.mk (trunc 0 (A →* Ω B)) (@group_trunc _ !inf_group_ppi)
|
||||||
|
|
||||||
|
|
|
@ -85,8 +85,6 @@ begin
|
||||||
exact pfiber_postnikov_map A n
|
exact pfiber_postnikov_map A n
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
||||||
set_option formatter.hide_full_terms false
|
|
||||||
definition pfiber_postnikov_map_pred' (A : spectrum) (n k l : ℤ) (p : n + k = l) :
|
definition pfiber_postnikov_map_pred' (A : spectrum) (n k l : ℤ) (p : n + k = l) :
|
||||||
pfiber (postnikov_map_pred (A k) (maxm2 l)) ≃* EM_spectrum (πₛ[n] A) l :=
|
pfiber (postnikov_map_pred (A k) (maxm2 l)) ≃* EM_spectrum (πₛ[n] A) l :=
|
||||||
begin
|
begin
|
||||||
|
|
|
@ -156,7 +156,7 @@ namespace EM
|
||||||
(ptrunc_pequiv (n+1+1) (EMadd1 G (n+1)))⁻¹ᵉ* :=
|
(ptrunc_pequiv (n+1+1) (EMadd1 G (n+1)))⁻¹ᵉ* :=
|
||||||
by reflexivity
|
by reflexivity
|
||||||
|
|
||||||
definition ap1_EMadd1_natural {G H : AbGroup} (φ : G →g H) (n : ℕ) :
|
definition loop_EMadd1_natural {G H : AbGroup} (φ : G →g H) (n : ℕ) :
|
||||||
psquare (loop_EMadd1 G n) (loop_EMadd1 H n)
|
psquare (loop_EMadd1 G n) (loop_EMadd1 H n)
|
||||||
(EMadd1_functor φ n) (Ω→ (EMadd1_functor φ (succ n))) :=
|
(EMadd1_functor φ n) (Ω→ (EMadd1_functor φ (succ n))) :=
|
||||||
begin
|
begin
|
||||||
|
@ -181,7 +181,7 @@ namespace EM
|
||||||
{ refine pwhisker_left _ !loopn_EMadd1_pequiv_EM1_succ ⬝* _,
|
{ refine pwhisker_left _ !loopn_EMadd1_pequiv_EM1_succ ⬝* _,
|
||||||
refine _ ⬝* pwhisker_right _ !loopn_EMadd1_pequiv_EM1_succ⁻¹*,
|
refine _ ⬝* pwhisker_right _ !loopn_EMadd1_pequiv_EM1_succ⁻¹*,
|
||||||
refine _ ⬝h* !loopn_succ_in_inv_natural,
|
refine _ ⬝h* !loopn_succ_in_inv_natural,
|
||||||
exact IH ⬝h* (apn_psquare n !ap1_EMadd1_natural) }
|
exact IH ⬝h* (apn_psquare n !loop_EMadd1_natural) }
|
||||||
end
|
end
|
||||||
|
|
||||||
definition homotopy_group_functor_EMadd1_functor {G H : AbGroup} (φ : G →g H) (n : ℕ) :
|
definition homotopy_group_functor_EMadd1_functor {G H : AbGroup} (φ : G →g H) (n : ℕ) :
|
||||||
|
@ -301,15 +301,18 @@ namespace EM
|
||||||
proof λa, idp qed
|
proof λa, idp qed
|
||||||
|
|
||||||
definition EMadd1_pmap_equiv (n : ℕ) (X Y : Type*) [is_conn (n+1) X] [is_trunc (n+1+1) X]
|
definition EMadd1_pmap_equiv (n : ℕ) (X Y : Type*) [is_conn (n+1) X] [is_trunc (n+1+1) X]
|
||||||
[is_conn (n+1) Y] [is_trunc (n+1+1) Y] : (X →* Y) ≃ πag[n+2] X →g πag[n+2] Y :=
|
[H4 : is_trunc (n+1+1) Y] : (X →* Y) ≃ πag[n+2] X →g πag[n+2] Y :=
|
||||||
begin
|
begin
|
||||||
|
have H4' : is_trunc ((n+1).+1) Y, from H4,
|
||||||
|
have is_set (Ωg[succ (n+1)] Y), from is_set_loopn (n+1+1) Y,
|
||||||
fapply equiv.MK,
|
fapply equiv.MK,
|
||||||
{ exact π→g[n+2] },
|
{ exact π→g[n+2] },
|
||||||
{ exact λφ, (EMadd1_pequiv_type Y n ∘* EMadd1_functor φ (n+1)) ∘* (EMadd1_pequiv_type X n)⁻¹ᵉ* },
|
{ intro φ, refine (_ ∘* EMadd1_functor φ (n+1)) ∘* (EMadd1_pequiv_type X n)⁻¹ᵉ*,
|
||||||
|
exact EMadd1_pmap (n+1) (gtrunc_isomorphism (Ωg[succ (n+1)] Y)) },
|
||||||
{ intro φ, apply homomorphism_eq,
|
{ intro φ, apply homomorphism_eq,
|
||||||
refine homotopy_group_functor_pcompose (n+2) _ _ ⬝hty _, exact sorry }, -- easy but tedious
|
refine homotopy_group_functor_pcompose (n+2) _ _ ⬝hty _, exact sorry }, -- easy but tedious
|
||||||
{ intro f, apply eq_of_phomotopy, refine (phomotopy_pinv_right_of_phomotopy _)⁻¹*,
|
{ intro f, apply eq_of_phomotopy, refine (phomotopy_pinv_right_of_phomotopy _)⁻¹*,
|
||||||
apply EMadd1_pequiv_type_natural }
|
exact sorry /-apply EMadd1_pequiv_type_natural-/ }
|
||||||
end
|
end
|
||||||
|
|
||||||
definition EM1_functor_trivial_homomorphism [constructor] (G H : Group) :
|
definition EM1_functor_trivial_homomorphism [constructor] (G H : Group) :
|
||||||
|
@ -343,19 +346,39 @@ namespace EM
|
||||||
{ refine !loopn_succ_in ⬝e* Ω≃[n] (loop_EMadd1 G (m + n))⁻¹ᵉ* ⬝e* e }
|
{ refine !loopn_succ_in ⬝e* Ω≃[n] (loop_EMadd1 G (m + n))⁻¹ᵉ* ⬝e* e }
|
||||||
end
|
end
|
||||||
|
|
||||||
|
definition loopn_EMadd1_add_of_eq (G : AbGroup) {n m k : ℕ} (p : m + n = k) : Ω[n] (EMadd1 G k) ≃* EMadd1 G m :=
|
||||||
|
by induction p; exact loopn_EMadd1_add G n m
|
||||||
|
|
||||||
|
definition EM1_phomotopy {G : Group} {X : Type*} [is_trunc 1 X] {f g : EM1 G →* X} (h : Ω→ f ~ Ω→ g) :
|
||||||
|
f ~* g :=
|
||||||
|
begin
|
||||||
|
fapply phomotopy.mk,
|
||||||
|
{ intro x, induction x using EM.set_rec with a,
|
||||||
|
{ exact respect_pt f ⬝ (respect_pt g)⁻¹ },
|
||||||
|
{ apply eq_pathover, apply move_top_of_right, apply move_bot_of_right,
|
||||||
|
apply move_top_of_left', apply move_bot_of_left, apply hdeg_square, exact h (pth a) }},
|
||||||
|
{ apply inv_con_cancel_right }
|
||||||
|
end
|
||||||
|
|
||||||
/- properties about EM -/
|
/- properties about EM -/
|
||||||
|
|
||||||
|
definition deloopable_EM [instance] [constructor] (G : AbGroup) (n : ℕ) : deloopable (EM G n) :=
|
||||||
|
deloopable.mk (EMadd1 G n) (loop_EM G n)
|
||||||
|
|
||||||
definition gEM (G : AbGroup) (n : ℕ) : InfGroup :=
|
definition gEM (G : AbGroup) (n : ℕ) : InfGroup :=
|
||||||
InfGroup_equiv_closed (Ωg (EMadd1 G n)) (loop_EM G n)
|
InfGroup_of_deloopable (EM G n)
|
||||||
|
|
||||||
definition gloop_EM1 [constructor] (G : Group) : Ωg (EM1 G) ≃∞g InfGroup_of_Group G :=
|
definition gloop_EM1 [constructor] (G : Group) : Ωg (EM1 G) ≃∞g InfGroup_of_Group G :=
|
||||||
inf_isomorphism_of_equiv (EM.base_eq_base_equiv G) groupoid_quotient.encode_con
|
inf_isomorphism_of_equiv (EM.base_eq_base_equiv G) groupoid_quotient.encode_con
|
||||||
|
|
||||||
|
definition gloop_EMadd1 [constructor] (G : AbGroup) (n : ℕ) : Ωg (EMadd1 G n) ≃∞g gEM G n :=
|
||||||
|
deloop_isomorphism (EM G n)
|
||||||
|
|
||||||
definition gEM0_isomorphism (G : AbGroup) : gEM G 0 ≃∞g InfGroup_of_Group G :=
|
definition gEM0_isomorphism (G : AbGroup) : gEM G 0 ≃∞g InfGroup_of_Group G :=
|
||||||
!InfGroup_equiv_closed_isomorphism⁻¹ᵍ⁸ ⬝∞g gloop_EM1 G
|
(gloop_EMadd1 G 0)⁻¹ᵍ⁸ ⬝∞g gloop_EM1 G
|
||||||
|
|
||||||
definition gEM_functor {G H : AbGroup} (φ : G →g H) (n : ℕ) : gEM G n →∞g gEM H n :=
|
definition gEM_functor {G H : AbGroup} (φ : G →g H) (n : ℕ) : gEM G n →∞g gEM H n :=
|
||||||
inf_homomorphism.mk (EM_functor φ n) sorry
|
gloop_EMadd1 H n ∘∞g Ωg→ (EMadd1_functor φ n) ∘∞g (gloop_EMadd1 G n)⁻¹ᵍ⁸
|
||||||
|
|
||||||
definition EM_pmap [unfold 8] {G : AbGroup} (X : InfGroup) (n : ℕ)
|
definition EM_pmap [unfold 8] {G : AbGroup} (X : InfGroup) (n : ℕ)
|
||||||
(e : AbInfGroup_of_AbGroup G →∞g Ωg'[n] X) [H : is_trunc n X] : EM G n →* X :=
|
(e : AbInfGroup_of_AbGroup G →∞g Ωg'[n] X) [H : is_trunc n X] : EM G n →* X :=
|
||||||
|
@ -366,9 +389,35 @@ namespace EM
|
||||||
end
|
end
|
||||||
|
|
||||||
definition EM_homomorphism_gloop [unfold 8] {G : AbGroup} (X : Type*) (n : ℕ)
|
definition EM_homomorphism_gloop [unfold 8] {G : AbGroup} (X : Type*) (n : ℕ)
|
||||||
(e : AbInfGroup_of_AbGroup G →∞g Ωg[succ n] X) [H : is_trunc n X] : gEM G n →∞g Ωg X :=
|
(e : AbInfGroup_of_AbGroup G →∞g Ωg[succ n] X) [H : is_trunc (n+1) X] : gEM G n →∞g Ωg X :=
|
||||||
Ωg→ (EMadd1_pmap n e) ∘∞g !InfGroup_equiv_closed_isomorphism⁻¹ᵍ⁸
|
Ωg→ (EMadd1_pmap n e) ∘∞g !InfGroup_equiv_closed_isomorphism⁻¹ᵍ⁸
|
||||||
|
|
||||||
|
definition gloopn_succ_in' (n : ℕ) (A : Type*) : Ωg[succ n] A ≃∞g Ωg'[n] (Ωg A) :=
|
||||||
|
inf_isomorphism_of_equiv (loopn_succ_in n A)
|
||||||
|
(by cases n with n; apply is_mul_hom_id; exact loopn_succ_in_con)
|
||||||
|
|
||||||
|
definition EM_homomorphism_deloopable [unfold 8] {G : AbGroup} (X : Type*) (H : deloopable X) (n : ℕ)
|
||||||
|
(e : AbInfGroup_of_AbGroup G →∞g Ωg'[n] (InfGroup_of_deloopable X)) (H : is_trunc (n+1) (deloop X)) :
|
||||||
|
gEM G n →∞g InfGroup_of_deloopable X :=
|
||||||
|
deloop_isomorphism X ∘∞g
|
||||||
|
EM_homomorphism_gloop (deloop X) n
|
||||||
|
((gloopn_succ_in' n (deloop X))⁻¹ᵍ⁸ ∘∞g Ωg'→[n] (deloop_isomorphism X)⁻¹ᵍ⁸ ∘∞g e)
|
||||||
|
|
||||||
|
definition is_mul_hom_EM_functor [constructor] (G H : AbGroup) (n : ℕ) :
|
||||||
|
is_mul_hom (λ(φ : G →gg H), EM_functor φ n) :=
|
||||||
|
begin
|
||||||
|
intro φ ψ,
|
||||||
|
apply eq_of_phomotopy,
|
||||||
|
exact sorry
|
||||||
|
-- exact sorry, exact sorry, exact sorry
|
||||||
|
-- refine idpath (φ 0 * ψ 0) ⬝ _,
|
||||||
|
end
|
||||||
|
|
||||||
|
/- an enriched homomorphism -/
|
||||||
|
definition EM_ehomomorphism [constructor] (G H : AbGroup) (n : ℕ) :
|
||||||
|
InfGroup_of_Group (G →gg H) →∞g InfGroup_of_deloopable (EM G n →** EM H n) :=
|
||||||
|
inf_homomorphism.mk (λφ, EM_functor φ n) (is_mul_hom_EM_functor G H n)
|
||||||
|
|
||||||
-- definition EM_homomorphism [unfold 8] {G : AbGroup} {X : Type*} (Y : Type*) (e : Ω Y ≃* X) (n : ℕ)
|
-- definition EM_homomorphism [unfold 8] {G : AbGroup} {X : Type*} (Y : Type*) (e : Ω Y ≃* X) (n : ℕ)
|
||||||
-- (e : AbInfGroup_of_AbGroup G →∞g Ωg[succ n] X) [H : is_trunc n X] : gEM G n →∞g X :=
|
-- (e : AbInfGroup_of_AbGroup G →∞g Ωg[succ n] X) [H : is_trunc n X] : gEM G n →∞g X :=
|
||||||
-- _
|
-- _
|
||||||
|
|
|
@ -2,9 +2,11 @@
|
||||||
|
|
||||||
import .EM .smash_adjoint ..algebra.ring ..algebra.arrow_group
|
import .EM .smash_adjoint ..algebra.ring ..algebra.arrow_group
|
||||||
|
|
||||||
open algebra eq EM is_equiv equiv is_trunc is_conn pointed trunc susp smash group nat
|
open algebra eq EM is_equiv equiv is_trunc is_conn pointed trunc susp smash group nat function
|
||||||
|
|
||||||
namespace EM
|
namespace EM
|
||||||
|
|
||||||
|
|
||||||
definition EM1product_adj {R : Ring} :
|
definition EM1product_adj {R : Ring} :
|
||||||
EM1 (AbGroup_of_Ring R) →* ppmap (EM1 (AbGroup_of_Ring R)) (EMadd1 (AbGroup_of_Ring R) 1) :=
|
EM1 (AbGroup_of_Ring R) →* ppmap (EM1 (AbGroup_of_Ring R)) (EMadd1 (AbGroup_of_Ring R) 1) :=
|
||||||
begin
|
begin
|
||||||
|
@ -25,6 +27,7 @@ definition EM0EMadd1product {A B C : AbGroup} (φ : A →g B →gg C) (n : ℕ)
|
||||||
A →* EMadd1 B n →** EMadd1 C n :=
|
A →* EMadd1 B n →** EMadd1 C n :=
|
||||||
EMadd1_pfunctor B C n ∘* pmap_of_homomorphism φ
|
EMadd1_pfunctor B C n ∘* pmap_of_homomorphism φ
|
||||||
|
|
||||||
|
-- TODO: simplify
|
||||||
definition EMadd1product {A B C : AbGroup} (φ : A →g B →gg C) (n m : ℕ) :
|
definition EMadd1product {A B C : AbGroup} (φ : A →g B →gg C) (n m : ℕ) :
|
||||||
EMadd1 A n →* EMadd1 B m →** EMadd1 C (m + succ n) :=
|
EMadd1 A n →* EMadd1 B m →** EMadd1 C (m + succ n) :=
|
||||||
begin
|
begin
|
||||||
|
@ -32,10 +35,12 @@ begin
|
||||||
{ refine is_trunc_pmap_of_is_conn _ (m.-1) !is_conn_EMadd1 _ _ _ _ !is_trunc_EMadd1,
|
{ refine is_trunc_pmap_of_is_conn _ (m.-1) !is_conn_EMadd1 _ _ _ _ !is_trunc_EMadd1,
|
||||||
exact le_of_eq (trunc_index.of_nat_add_plus_two_of_nat m n)⁻¹ᵖ },
|
exact le_of_eq (trunc_index.of_nat_add_plus_two_of_nat m n)⁻¹ᵖ },
|
||||||
apply EMadd1_pmap,
|
apply EMadd1_pmap,
|
||||||
exact sorry
|
refine (gloopn_pmap_isomorphism (succ n) _ _)⁻¹ᵍ⁸ ∘∞g
|
||||||
/- the underlying pointed map is: -/
|
gpmap_loop_homomorphism_right (EMadd1 B m) (loopn_EMadd1_add_of_eq C !succ_add)⁻¹ᵉ* ∘∞g
|
||||||
-- refine (loopn_ppmap_pequiv _ _ _)⁻¹ᵉ* ∘* ppcompose_left !loopn_EMadd1_add⁻¹ᵉ* ∘*
|
gloop_pmap_isomorphism _ _ ∘∞g
|
||||||
-- EM0EMadd1product φ m
|
(deloop_isomorphism _)⁻¹ᵍ⁸ ∘∞g
|
||||||
|
EM_ehomomorphism B C (succ m) ∘∞g
|
||||||
|
inf_homomorphism_of_homomorphism φ
|
||||||
end
|
end
|
||||||
|
|
||||||
definition EMproduct1 {A B C : AbGroup} (φ : A →g B →gg C) (n m : ℕ) :
|
definition EMproduct1 {A B C : AbGroup} (φ : A →g B →gg C) (n m : ℕ) :
|
||||||
|
@ -51,8 +56,9 @@ begin
|
||||||
{ exact ppcompose_left (ptransport (EMadd1 C) !succ_add⁻¹) ∘* EMadd1product φ n m }}
|
{ exact ppcompose_left (ptransport (EMadd1 C) !succ_add⁻¹) ∘* EMadd1product φ n m }}
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
||||||
definition EMproduct2 {A B C : AbGroup} (φ : A →g B →gg C) (n m : ℕ) :
|
definition EMproduct2 {A B C : AbGroup} (φ : A →g B →gg C) (n m : ℕ) :
|
||||||
EM A n →* EM B m →** EM C (m + n) :=
|
EM A n →* (EM B m →** EM C (m + n)) :=
|
||||||
begin
|
begin
|
||||||
assert H1 : is_trunc n (gpmap_loop' (EM B m) (loop_EM C (m + n))),
|
assert H1 : is_trunc n (gpmap_loop' (EM B m) (loop_EM C (m + n))),
|
||||||
{ exact is_trunc_pmap_of_is_conn_nat _ m !is_conn_EM _ _ _ !le.refl !is_trunc_EM },
|
{ exact is_trunc_pmap_of_is_conn_nat _ m !is_conn_EM _ _ _ !le.refl !is_trunc_EM },
|
||||||
|
@ -75,5 +81,43 @@ begin
|
||||||
exact sorry
|
exact sorry
|
||||||
end
|
end
|
||||||
|
|
||||||
|
definition EMproduct4 {A B C : AbGroup} (φ : A →g B →gg C) (n m : ℕ) :
|
||||||
|
gEM A n →∞g Ωg (EM B m →** EM C (m + n + 1)) :=
|
||||||
|
begin
|
||||||
|
assert H1 : is_trunc (n+1) (EM B m →** EM C (m + n + 1)),
|
||||||
|
{ exact is_trunc_pmap_of_is_conn_nat _ m !is_conn_EM _ _ _ !le.refl !is_trunc_EM },
|
||||||
|
apply EM_homomorphism_gloop,
|
||||||
|
refine (gloopn_pmap_isomorphism _ _ _)⁻¹ᵍ⁸ ∘∞g _ ∘∞g inf_homomorphism_of_homomorphism φ,
|
||||||
|
|
||||||
|
-- exact _ /- (loopn_ppmap_pequiv _ _ _)⁻¹ᵉ* -/ ∘∞g _ /-ppcompose_left !loopn_EMadd1_add⁻¹ᵉ*-/ ∘∞g
|
||||||
|
-- _ ∘∞g inf_homomorphism_of_homomorphism φ
|
||||||
|
exact sorry
|
||||||
|
end
|
||||||
|
|
||||||
|
definition EMproduct5 {A B C : AbGroup} (φ : A →g B →gg C) (n m : ℕ) :
|
||||||
|
InfGroup_of_deloopable (EM A n) →∞g InfGroup_of_deloopable (EM B m →** EM C (m + n)) :=
|
||||||
|
begin
|
||||||
|
assert H1 : is_trunc (n + 1) (deloop (EM B m →** EM C (m + n))),
|
||||||
|
{ exact is_trunc_pmap_of_is_conn_nat _ m !is_conn_EM _ _ _ !le.refl !is_trunc_EM },
|
||||||
|
refine EM_homomorphism_deloopable _ _ _ _ _,
|
||||||
|
|
||||||
|
-- exact _ /- (loopn_ppmap_pequiv _ _ _)⁻¹ᵉ* -/ ∘∞g _ /-ppcompose_left !loopn_EMadd1_add⁻¹ᵉ*-/ ∘∞g
|
||||||
|
-- _ ∘∞g inf_homomorphism_of_homomorphism φ
|
||||||
|
exact sorry
|
||||||
|
end
|
||||||
|
|
||||||
|
definition EMadd1product2 {A B C : AbGroup} (φ : A →g B →gg C) (n m : ℕ) :
|
||||||
|
gEM A (n+1) →∞g Ωg[succ n] (EMadd1 B m →** EMadd1 C m) :=
|
||||||
|
begin
|
||||||
|
assert H1 : is_trunc (n+1) (Ω[n] (EMadd1 B m →** EMadd1 C m)),
|
||||||
|
{ apply is_trunc_loopn, exact sorry },
|
||||||
|
-- refine EM_homomorphism_gloop (Ω[n] (EMadd1 B m →** EMadd1 C m)) _ _,
|
||||||
|
/- the underlying pointed map is: -/
|
||||||
|
-- exact sorry
|
||||||
|
-- refine (loopn_ppmap_pequiv _ _ _)⁻¹ᵉ* ∘* ppcompose_left !loopn_EMadd1_add⁻¹ᵉ* ∘*
|
||||||
|
-- EM0EMadd1product φ m
|
||||||
|
exact sorry
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
end EM
|
end EM
|
||||||
|
|
|
@ -611,5 +611,29 @@ begin
|
||||||
fapply phomotopy.mk, exact homotopy.rfl, refine whisker_left idp (ap_id p)⁻¹
|
fapply phomotopy.mk, exact homotopy.rfl, refine whisker_left idp (ap_id p)⁻¹
|
||||||
end
|
end
|
||||||
|
|
||||||
|
structure deloopable.{u} [class] (A : pType.{u}) : Type.{u+1} :=
|
||||||
|
(deloop : pType.{u})
|
||||||
|
(deloop_pequiv : Ω deloop ≃* A)
|
||||||
|
|
||||||
|
abbreviation deloop [unfold 2] := deloopable.deloop
|
||||||
|
abbreviation deloop_pequiv [unfold 2] := deloopable.deloop_pequiv
|
||||||
|
|
||||||
|
definition deloopable_loop [instance] [constructor] (A : Type*) : deloopable (Ω A) :=
|
||||||
|
deloopable.mk A pequiv.rfl
|
||||||
|
|
||||||
|
definition deloopable_loopn [instance] [priority 500] (n : ℕ) [H : is_succ n] (A : Type*) :
|
||||||
|
deloopable (Ω[n] A) :=
|
||||||
|
by induction H with n; exact deloopable.mk (Ω[n] A) pequiv.rfl
|
||||||
|
|
||||||
|
definition inf_group_of_deloopable (A : Type*) [deloopable A] : inf_group A :=
|
||||||
|
inf_group_equiv_closed (deloop_pequiv A) _
|
||||||
|
|
||||||
|
definition InfGroup_of_deloopable (A : Type*) [deloopable A] : InfGroup :=
|
||||||
|
InfGroup.mk A (inf_group_of_deloopable A)
|
||||||
|
|
||||||
|
definition deloop_isomorphism [constructor] (A : Type*) [deloopable A] :
|
||||||
|
Ωg (deloop A) ≃∞g InfGroup_of_deloopable A :=
|
||||||
|
InfGroup_equiv_closed_isomorphism (Ωg (deloop A)) (deloop_pequiv A)
|
||||||
|
|
||||||
|
|
||||||
end pointed
|
end pointed
|
||||||
|
|
|
@ -938,6 +938,15 @@ namespace pointed
|
||||||
(Π*(a : A), Ω (B a)) ≃* Ω (Π*a, B a) :=
|
(Π*(a : A), Ω (B a)) ≃* Ω (Π*a, B a) :=
|
||||||
(loop_pppi_pequiv B)⁻¹ᵉ*
|
(loop_pppi_pequiv B)⁻¹ᵉ*
|
||||||
|
|
||||||
|
definition deloopable_pppi [instance] [constructor] {A : Type*} (B : A → Type*) [Πa, deloopable (B a)] :
|
||||||
|
deloopable (Π*a, B a) :=
|
||||||
|
deloopable.mk (Π*a, deloop (B a))
|
||||||
|
(loop_pppi_pequiv (λa, deloop (B a)) ⬝e* ppi_pequiv_right (λa, deloop_pequiv (B a)))
|
||||||
|
|
||||||
|
definition deloopable_ppmap [instance] [constructor] (A B : Type*) [deloopable B] :
|
||||||
|
deloopable (A →** B) :=
|
||||||
|
deloopable_pppi (λa, B)
|
||||||
|
|
||||||
|
|
||||||
/- below is an alternate proof strategy for the naturality of loop_pppi_pequiv_natural,
|
/- below is an alternate proof strategy for the naturality of loop_pppi_pequiv_natural,
|
||||||
where we define loop_pppi_pequiv as composite of pointed equivalences, and proved the
|
where we define loop_pppi_pequiv as composite of pointed equivalences, and proved the
|
||||||
|
|
Loading…
Reference in a new issue