diff --git a/logic.hlean b/logic.hlean new file mode 100644 index 0000000..33941b8 --- /dev/null +++ b/logic.hlean @@ -0,0 +1,57 @@ +/- +Copyright (c) 2017 Jeremy Avigad. All rights reserved. +Released under Apache 2.0 license as described in the file LICENSE. +Authors: Jeremy Avigad +-/ +import types.trunc +open funext eq trunc is_trunc prod sum + +--reserve prefix `¬`:40 +--reserve prefix `~`:40 +--reserve infixr ` ∧ `:35 +--reserve infixr ` /\ `:35 +--reserve infixr ` \/ `:30 +--reserve infixr ` ∨ `:30 +--reserve infix ` <-> `:20 +--reserve infix ` ↔ `:20 + +namespace logic + +section +open trunc_index + +definition propext {p q : Prop} (h : p ↔ q) : p = q := +tua (equiv_of_iff_of_is_prop h) + +end + +definition false : Prop := trunctype.mk empty _ + +definition false.elim {A : Type} (h : false) : A := empty.elim h + +definition true : Prop := trunctype.mk unit _ + +definition true.intro : true := unit.star + +definition trivial : true := unit.star + +definition and (p q : Prop) : Prop := tprod p q + +infixr ` ∧ ` := and +infixr ` /\ ` := and + +definition and.intro {p q : Prop} (h₁ : p) (h₂ : q) : and p q := prod.mk h₁ h₂ + +definition and.left {p q : Prop} (h : p ∧ q) : p := prod.pr1 h + +definition and.right {p q : Prop} (h : p ∧ q) : q := prod.pr2 h + +definition not (p : Prop) : Prop := trunctype.mk (p → empty) _ + +prefix `~` := not + +definition or.inl := @or.intro_left + +definition or.inr := @or.intro_right + +end logic diff --git a/set.hlean b/set.hlean index 3e580b6..a11da9e 100644 --- a/set.hlean +++ b/set.hlean @@ -3,21 +3,11 @@ Copyright (c) 2017 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad -/ -import types.trunc -open funext eq trunc is_trunc +import types.trunc .logic +open funext eq trunc is_trunc logic definition set (X : Type) := X → Prop -section -open trunc_index - -definition propext {p q : Prop} (h : p ↔ q) : p = q := -tua (equiv_of_iff_of_is_prop h) - -end - -definition tempty {n : trunc_index} : (n.+1)-Type := trunctype.mk empty _ - namespace set variable {X : Type} @@ -54,25 +44,24 @@ assume h₁ h₂, h₁ _ h₂ /- empty set -/ -definition empty : set X := λx, tempty +definition empty : set X := λx, false notation `∅` := empty theorem not_mem_empty (x : X) : ¬ (x ∈ ∅) := assume H : x ∈ ∅, H -theorem mem_empty_eq (x : X) : x ∈ ∅ = tempty := rfl +theorem mem_empty_eq (x : X) : x ∈ ∅ = false := rfl -/- theorem eq_empty_of_forall_not_mem {s : set X} (H : ∀ x, x ∉ s) : s = ∅ := ext (take x, iff.intro (assume xs, absurd xs (H x)) - (assume xe, absurd xe (not_mem_empty _))) + (assume xe, absurd xe (not_mem_empty x))) theorem ne_empty_of_mem {s : set X} {x : X} (H : x ∈ s) : s ≠ ∅ := - begin intro Hs, rewrite Hs at H, apply not_mem_empty _ H end + begin intro Hs, rewrite Hs at H, apply not_mem_empty x H end theorem empty_subset (s : set X) : ∅ ⊆ s := -take x, assume H, false.elim H +take x, assume H, empty.elim H theorem eq_empty_of_subset_empty {s : set X} (H : s ⊆ ∅) : s = ∅ := subset.antisymm H (empty_subset s) @@ -80,9 +69,55 @@ subset.antisymm H (empty_subset s) theorem subset_empty_iff (s : set X) : s ⊆ ∅ ↔ s = ∅ := iff.intro eq_empty_of_subset_empty (take xeq, by rewrite xeq; apply subset.refl ∅) -lemma bounded_forall_empty_iff {P : X → Prop} : - (∀₀x∈∅, P x) ↔ true := -iff.intro (take H, true.intro) (take H, by contradiction) --/ +/- universal set -/ + +definition univ : set X := λx, true + +theorem mem_univ (x : X) : x ∈ univ := trivial + +theorem mem_univ_eq (x : X) : x ∈ univ = true := rfl + +theorem empty_ne_univ [h : inhabited X] : (empty : set X) ≠ univ := +assume H : empty = univ, +absurd (mem_univ (inhabited.value h)) (eq.rec_on H (not_mem_empty (arbitrary X))) + +theorem subset_univ (s : set X) : s ⊆ univ := λ x H, unit.star + +theorem eq_univ_of_univ_subset {s : set X} (H : univ ⊆ s) : s = univ := +eq_of_subset_of_subset (subset_univ s) H + +theorem eq_univ_of_forall {s : set X} (H : ∀ x, x ∈ s) : s = univ := +ext (take x, iff.intro (assume H', unit.star) (assume H', H x)) + + + +/- set-builder notation -/ + +-- {x : X | P} +definition set_of (P : X → Prop) : set X := P +notation `{` binder ` | ` r:(scoped:1 P, set_of P) `}` := r + +-- {x ∈ s | P} +definition sep (P : X → Prop) (s : set X) : set X := λx, x ∈ s ∧ P x +notation `{` binder ` ∈ ` s ` | ` r:(scoped:1 p, sep p s) `}` := r + +/- insert -/ + +definition insert (x : X) (a : set X) : set X := {y : X | y = x ∨ y ∈ a} + +-- '{x, y, z} +notation `'{`:max a:(foldr `, ` (x b, insert x b) ∅) `}`:0 := a + +theorem subset_insert (x : X) (a : set X) : a ⊆ insert x a := +take y, assume ys, or.inr ys + +theorem mem_insert (x : X) (s : set X) : x ∈ insert x s := +or.inl rfl + +theorem mem_insert_of_mem {x : X} {s : set X} (y : X) : x ∈ s → x ∈ insert y s := +assume h, or.inr h + +theorem eq_or_mem_of_mem_insert {x a : X} {s : set X} : x ∈ insert a s → x = a ∨ x ∈ s := +assume h, h end set