WIP on exact couple and basic group theory
This commit is contained in:
parent
e4c5d34d10
commit
e87c235e24
3 changed files with 19 additions and 17 deletions
|
@ -1 +0,0 @@
|
||||||
Steve@steveawodeysAir.wv.cc.cmu.edu.255
|
|
|
@ -15,9 +15,9 @@ structure is_exact {A B C : CommGroup} (f : A →g B) (g : B →g C) :=
|
||||||
( im_in_ker : Π(a:A), g (f a) = 1)
|
( im_in_ker : Π(a:A), g (f a) = 1)
|
||||||
( ker_in_im : Π(b:B), (g b = 1) → ∃(a:A), f a = b)
|
( ker_in_im : Π(b:B), (g b = 1) → ∃(a:A), f a = b)
|
||||||
|
|
||||||
definition is_boundary {B : CommGroup} (d : B →g B) := Π(b:B), d (d b) = 1
|
definition is_differential {B : CommGroup} (d : B →g B) := Π(b:B), d (d b) = 1
|
||||||
|
|
||||||
definition image_subgroup_of_bd {B : CommGroup} (d : B →g B) (H : is_boundary d) : subgroup_rel (comm_kernel d) :=
|
definition image_subgroup_of_diff {B : CommGroup} (d : B →g B) (H : is_differential d) : subgroup_rel (comm_kernel d) :=
|
||||||
subgroup_rel_of_subgroup (image_subgroup d) (kernel_subgroup d)
|
subgroup_rel_of_subgroup (image_subgroup d) (kernel_subgroup d)
|
||||||
begin
|
begin
|
||||||
intro g p,
|
intro g p,
|
||||||
|
@ -27,8 +27,8 @@ definition image_subgroup_of_bd {B : CommGroup} (d : B →g B) (H : is_boundary
|
||||||
exact H h
|
exact H h
|
||||||
end
|
end
|
||||||
|
|
||||||
definition homology {B : CommGroup} (d : B →g B) (H : is_boundary d) : CommGroup :=
|
definition homology {B : CommGroup} (d : B →g B) (H : is_differential d) : CommGroup :=
|
||||||
@quotient_comm_group (comm_kernel d) (image_subgroup_of_bd d H)
|
@quotient_comm_group (comm_kernel d) (image_subgroup_of_diff d H)
|
||||||
|
|
||||||
structure exact_couple (A B : CommGroup) : Type :=
|
structure exact_couple (A B : CommGroup) : Type :=
|
||||||
( i : A →g A) (j : A →g B) (k : B →g A)
|
( i : A →g A) (j : A →g B) (k : B →g A)
|
||||||
|
@ -36,12 +36,12 @@ structure exact_couple (A B : CommGroup) : Type :=
|
||||||
( exact_jk : is_exact j k)
|
( exact_jk : is_exact j k)
|
||||||
( exact_ki : is_exact k i)
|
( exact_ki : is_exact k i)
|
||||||
|
|
||||||
definition boundary {A B : CommGroup} (CC : exact_couple A B) : B →g B :=
|
definition differential {A B : CommGroup} (EC : exact_couple A B) : B →g B :=
|
||||||
(exact_couple.j CC) ∘g (exact_couple.k CC)
|
(exact_couple.j EC) ∘g (exact_couple.k EC)
|
||||||
|
|
||||||
definition boundary_is_boundary {A B : CommGroup} (CC : exact_couple A B) : is_boundary (boundary CC) :=
|
definition differential_is_differential {A B : CommGroup} (EC : exact_couple A B) : is_differential (differential EC) :=
|
||||||
begin
|
begin
|
||||||
induction CC,
|
induction EC,
|
||||||
induction exact_jk,
|
induction exact_jk,
|
||||||
intro b,
|
intro b,
|
||||||
exact (ap (group_fun j) (im_in_ker (group_fun k b))) ⬝ (respect_one j)
|
exact (ap (group_fun j) (im_in_ker (group_fun k b))) ⬝ (respect_one j)
|
||||||
|
@ -49,21 +49,21 @@ definition boundary_is_boundary {A B : CommGroup} (CC : exact_couple A B) : is_b
|
||||||
|
|
||||||
section derived_couple
|
section derived_couple
|
||||||
|
|
||||||
variables {A B : CommGroup} (CC : exact_couple A B)
|
variables {A B : CommGroup} (EC : exact_couple A B)
|
||||||
|
|
||||||
definition derived_couple_A : CommGroup :=
|
definition derived_couple_A : CommGroup :=
|
||||||
comm_subgroup (image_subgroup (exact_couple.i CC))
|
comm_subgroup (image_subgroup (exact_couple.i EC))
|
||||||
|
|
||||||
definition derived_couple_B : CommGroup :=
|
definition derived_couple_B : CommGroup :=
|
||||||
homology (boundary CC) (boundary_is_boundary CC)
|
homology (differential EC) (differential_is_differential EC)
|
||||||
|
|
||||||
definition derived_couple_i : derived_couple_A CC →g derived_couple_A CC :=
|
definition derived_couple_i : derived_couple_A EC →g derived_couple_A EC :=
|
||||||
(image_lift (exact_couple.i CC)) ∘g (image_incl (exact_couple.i CC))
|
(image_lift (exact_couple.i EC)) ∘g (image_incl (exact_couple.i EC))
|
||||||
|
|
||||||
definition derived_couple_j : derived_couple_A CC →g derived_couple_B CC :=
|
definition derived_couple_j : derived_couple_A EC →g derived_couple_B EC :=
|
||||||
begin
|
begin
|
||||||
|
exact sorry,
|
||||||
-- refine (comm_gq_map (comm_kernel (boundary CC)) (image_subgroup_of_bd (boundary CC) (boundary_is_boundary CC))) ∘g _,
|
-- refine (comm_gq_map (comm_kernel (boundary CC)) (image_subgroup_of_bd (boundary CC) (boundary_is_boundary CC))) ∘g _,
|
||||||
exact sorry
|
|
||||||
end
|
end
|
||||||
|
|
||||||
end derived_couple
|
end derived_couple
|
||||||
|
|
|
@ -248,7 +248,10 @@ definition comm_group_first_iso_thm (A B : CommGroup) (f : A →g B) : quotient_
|
||||||
fapply image_lift,
|
fapply image_lift,
|
||||||
intro a,
|
intro a,
|
||||||
intro k,
|
intro k,
|
||||||
fapply comm_gq_map_eq_one (f a),
|
fapply image_incl_eq_one,
|
||||||
|
exact k,
|
||||||
|
exact sorry,
|
||||||
|
-- show that the above map is injective and surjective.
|
||||||
end
|
end
|
||||||
|
|
||||||
/- set generating normal subgroup -/
|
/- set generating normal subgroup -/
|
||||||
|
|
Loading…
Reference in a new issue