Add dirsum_down_lift.

This commit is contained in:
favonia 2017-06-09 10:08:21 -06:00
parent c9ce91524f
commit e90c657dcb

View file

@ -8,7 +8,7 @@ Constructions with groups
import .quotient_group .free_commutative_group .product_group import .quotient_group .free_commutative_group .product_group
open eq is_equiv algebra is_trunc set_quotient relation sigma prod sum list trunc function equiv sigma.ops open eq is_equiv algebra is_trunc set_quotient relation sigma prod sum list trunc function equiv sigma.ops lift
namespace group namespace group
@ -118,7 +118,7 @@ namespace group
} }
end end
variables {I J : Set} {Y Y' Y'' : I → AbGroup} variables {I J : Type} [is_set I] [is_set J] {Y Y' Y'' : I → AbGroup}
definition dirsum_functor [constructor] (f : Πi, Y i →g Y' i) : dirsum Y →g dirsum Y' := definition dirsum_functor [constructor] (f : Πi, Y i →g Y' i) : dirsum Y →g dirsum Y' :=
dirsum_elim (λi, dirsum_incl Y' i ∘g f i) dirsum_elim (λi, dirsum_incl Y' i ∘g f i)
@ -146,7 +146,7 @@ namespace group
intro i y, exact sorry intro i y, exact sorry
end end
definition dirsum_functor_homotopy {f f' : Πi, Y i →g Y' i} (p : f ~2 f') : definition dirsum_functor_homotopy (f f' : Πi, Y i →g Y' i) (p : f ~2 f') :
dirsum_functor f ~ dirsum_functor f' := dirsum_functor f ~ dirsum_functor f' :=
begin begin
apply dirsum_homotopy, apply dirsum_homotopy,
@ -167,13 +167,13 @@ namespace group
{ intro ds, { intro ds,
refine (homomorphism_comp_compute (dirsum_functor (λ i, f i)) (dirsum_functor (λ i, (f i)⁻¹ᵍ)) _)⁻¹ ⬝ _, refine (homomorphism_comp_compute (dirsum_functor (λ i, f i)) (dirsum_functor (λ i, (f i)⁻¹ᵍ)) _)⁻¹ ⬝ _,
refine dirsum_functor_compose (λ i, f i) (λ i, (f i)⁻¹ᵍ) ds ⬝ _, refine dirsum_functor_compose (λ i, f i) (λ i, (f i)⁻¹ᵍ) ds ⬝ _,
refine @dirsum_functor_homotopy I Y' Y' _ (λ i, !gid) (λ i, to_right_inv (equiv_of_isomorphism (f i))) ds ⬝ _, refine dirsum_functor_homotopy _ (λ i, !gid) (λ i, to_right_inv (equiv_of_isomorphism (f i))) ds ⬝ _,
exact !dirsum_functor_gid exact !dirsum_functor_gid
}, },
{ intro ds, { intro ds,
refine (homomorphism_comp_compute (dirsum_functor (λ i, (f i)⁻¹ᵍ)) (dirsum_functor (λ i, f i)) _)⁻¹ ⬝ _, refine (homomorphism_comp_compute (dirsum_functor (λ i, (f i)⁻¹ᵍ)) (dirsum_functor (λ i, f i)) _)⁻¹ ⬝ _,
refine dirsum_functor_compose (λ i, (f i)⁻¹ᵍ) (λ i, f i) ds ⬝ _, refine dirsum_functor_compose (λ i, (f i)⁻¹ᵍ) (λ i, f i) ds ⬝ _,
refine @dirsum_functor_homotopy I Y Y _ (λ i, !gid) (λ i x, refine dirsum_functor_homotopy _ (λ i, !gid) (λ i x,
proof proof
to_left_inv (equiv_of_isomorphism (f i)) x to_left_inv (equiv_of_isomorphism (f i)) x
qed qed
@ -183,3 +183,36 @@ namespace group
end end
end group end group
namespace group
definition dirsum_down_left.{u v} {I : Type.{u}} [is_set I] {Y : I → AbGroup}
: dirsum (Y ∘ down.{u v}) ≃g dirsum Y :=
let to_hom := @dirsum_functor_left _ _ _ _ Y down.{u v} in
let from_hom := dirsum_elim (λi, dirsum_incl (Y ∘ down) (up i)) in
begin
fapply isomorphism.mk,
{ exact to_hom },
fapply adjointify,
{ exact from_hom },
{ intro ds,
refine (homomorphism_comp_compute to_hom from_hom ds)⁻¹ ⬝ _,
refine @dirsum_homotopy I _ Y (dirsum Y) (to_hom ∘g from_hom) !gid _ ds,
intro i y,
refine homomorphism_comp_compute to_hom from_hom _ ⬝ _,
refine ap to_hom (dirsum_elim_compute (λi, dirsum_incl (Y ∘ down) (up i)) i y) ⬝ _,
refine dirsum_elim_compute _ (up i) y ⬝ _,
reflexivity
},
{ intro ds,
refine (homomorphism_comp_compute from_hom to_hom ds)⁻¹ ⬝ _,
refine @dirsum_homotopy _ _ (Y ∘ down) (dirsum (Y ∘ down)) (from_hom ∘g to_hom) !gid _ ds,
intro i y, induction i with i,
refine homomorphism_comp_compute from_hom to_hom _ ⬝ _,
refine ap from_hom (dirsum_elim_compute (λi, dirsum_incl Y (down i)) (up i) y) ⬝ _,
refine dirsum_elim_compute _ i y ⬝ _,
reflexivity
}
end
end group