prove some properties about is_built_from

One property in this commit which we will use is the resulting short exact sequence if you have only two nontrivial subgroups.
This commit is contained in:
Floris van Doorn 2018-10-05 18:03:12 -04:00
parent 266e37d9ed
commit eb8601dc93

View file

@ -280,7 +280,8 @@ section
induction φ₁ with φ₁ q₁, induction φ₂ with φ₂ q₂, esimp at p, induction p,
exact ap (homomorphism.mk φ₁) !is_prop.elim
end
end
end
section
@ -403,6 +404,11 @@ end
(h : Π(r : R) g, φ (r • g) = r • φ g) : M₁ ≃lm M₂ :=
isomorphism.mk (lm_homomorphism_of_group_homomorphism φ h) (group.isomorphism.is_equiv_to_hom φ)
definition trivial_homomorphism [constructor] (M₁ M₂ : LeftModule R) : M₁ →lm M₂ :=
lm_homomorphism_of_group_homomorphism (group.trivial_add_homomorphism M₁ M₂)
(λs m, (smul_zero s)⁻¹)
section
local attribute pSet_of_LeftModule [coercion]
definition is_exact_mod (f : M₁ →lm M₂) (f' : M₂ →lm M₃) : Type :=
@ -493,31 +499,6 @@ end
is_built_from.mk (λn, part H (n+1)) (λn, ses H (n+1)) isomorphism.rfl (pred (n₀ H))
(λs Hle, HD' H _ (le_succ_of_pred_le Hle))
definition isomorphism_of_is_contr_part (H : is_built_from D E) (n : ) (HE : is_contr (E n)) :
part H n ≃lm part H (n+1) :=
isomorphism_of_is_contr_left (ses H n) HE
definition is_contr_submodules (H : is_built_from D E) (HD : is_contr D) (n : ) :
is_contr (part H n) :=
begin
induction n with n IH,
{ exact is_trunc_equiv_closed_rev -2 (equiv_of_isomorphism (e0 H)) _ },
{ exact is_contr_right_of_short_exact_mod (ses H n) IH }
end
definition is_contr_quotients (H : is_built_from D E) (HD : is_contr D) (n : ) :
is_contr (E n) :=
begin
apply is_contr_left_of_short_exact_mod (ses H n),
exact is_contr_submodules H HD n
end
definition is_contr_total (H : is_built_from D E) (HE : Πn, is_contr (E n)) : is_contr D :=
have is_contr (part H 0), from
nat.rec_down (λn, is_contr (part H n)) _ (HD' H _ !le.refl)
(λn H2, is_contr_middle_of_short_exact_mod (ses H n) (HE n) H2),
is_contr_equiv_closed (equiv_of_isomorphism (e0 H)) _
definition is_built_from_isomorphism (e : D ≃lm D') (f : Πn, E n ≃lm E' n)
(H : is_built_from D E) : is_built_from D' E' :=
⦃is_built_from, H, e0 := e0 H ⬝lm e,
@ -527,9 +508,86 @@ end
is_built_from D' E :=
⦃is_built_from, H, e0 := e0 H ⬝lm e⦄
definition isomorphism_of_is_contr_submodule (H : is_built_from D E) (n : )
(HE : is_contr (E n)) : part H n ≃lm part H (n+1) :=
isomorphism_of_is_contr_left (ses H n) HE
definition isomorphism_of_is_contr_submodules_range (H : is_built_from D E) {n k : }
(Hnk : n ≤ k) (HE : Πl, n ≤ l → l < k → is_contr (E l)) : part H n ≃lm part H k :=
begin
induction Hnk with k Hnk IH,
{ reflexivity },
{ refine IH (λl Hnl Hlk, HE l Hnl (lt.step Hlk)) ⬝lm
isomorphism_of_is_contr_submodule H k (HE k Hnk !self_lt_succ), }
end
definition is_contr_quotients_of_is_contr_total (H : is_built_from D E) (HD : is_contr D) (n : ) :
is_contr (part H n) :=
begin
induction n with n IH,
{ exact is_trunc_equiv_closed_rev -2 (equiv_of_isomorphism (e0 H)) _ },
{ exact is_contr_right_of_short_exact_mod (ses H n) IH }
end
definition is_contr_quotients_of_is_contr_submodules (H : is_built_from D E) {n : }
(HE : Πk, n ≤ k → is_contr (E k)) : is_contr (part H n) :=
begin
refine is_contr_equiv_closed_rev _ (HD' H (max n (n₀ H)) !le_max_right),
apply equiv_of_isomorphism,
apply isomorphism_of_is_contr_submodules_range H !le_max_left,
intros l Hnl Hl', exact HE l Hnl
end
/- alternate direct proof -/
-- nat.rec_down (λk, is_contr (part H (n + k))) _ (HD' H _ !nat.le_add_left)
-- (λk H2, is_contr_middle_of_short_exact_mod (ses H (n + k)) (HE (n + k) !nat.le_add_right)
-- proof H2 qed)
definition isomorphism_of_is_contr_submodules (H : is_built_from D E) {n : }
(HE : Πk, n < k → is_contr (E k)) : E n ≃lm part H n :=
isomorphism_of_is_contr_right (ses H n) (is_contr_quotients_of_is_contr_submodules H HE)
-- definition is_contr_quotients_of_is_contr_submodules1 (H : is_built_from D E) (n : )
-- (HE : Πk, n ≤ k → is_contr (E k)) : is_contr (part H n) :=
-- nat.rec_down (λk, is_contr (part H (n + k))) _ (HD' H _ !nat.le_add_left)
-- (λk H2, is_contr_middle_of_short_exact_mod (ses H (n + k)) (HE (n + k) !nat.le_add_right)
-- proof H2 qed)
definition isomorphism_zero_of_is_built_from (H : is_built_from D E) (p : n₀ H = 1) : E 0 ≃lm D :=
isomorphism_of_is_contr_right (ses H 0) (HD' H 1 (le_of_eq p)) ⬝lm e0 H
definition isomorphism_total_of_is_contr_submodules (H : is_built_from D E) {n : }
(HE : Πk, k < n → is_contr (E k)) : D ≃lm part H n :=
(e0 H)⁻¹ˡᵐ ⬝lm isomorphism_of_is_contr_submodules_range H !zero_le (λk H0k Hkn, HE k Hkn)
definition isomorphism_of_is_contr_submodules_but_one (H : is_built_from D E) {n : }
(HE : Πk, k ≠ n → is_contr (E k)) : D ≃lm E n :=
(e0 H)⁻¹ˡᵐ ⬝lm
isomorphism_of_is_contr_submodules_range H !zero_le (λk H0k Hkn, HE k (ne_of_lt Hkn)) ⬝lm
(isomorphism_of_is_contr_submodules H (λk Hk, HE k (ne.symm (ne_of_lt Hk))))⁻¹ˡᵐ
definition short_exact_mod_of_is_contr_submodules (H : is_built_from D E) {n m : } (Hnm : n < m)
(HE : Πk, k ≠ n → k ≠ m → is_contr (E k)) : short_exact_mod (E n) D (E m) :=
begin
refine short_exact_mod_isomorphism isomorphism.rfl _ _ (ses H n),
{ exact isomorphism_total_of_is_contr_submodules H (λk Hk, HE k (ne_of_lt Hk)
(ne_of_lt (lt.trans Hk Hnm))) },
{ exact isomorphism_of_is_contr_submodules H
(λk Hk, HE k (ne.symm (ne_of_lt (lt.trans Hnm Hk))) (ne.symm (ne_of_lt Hk))) ⬝lm
(isomorphism_of_is_contr_submodules_range H Hnm
(λk Hnk Hkm, HE k (ne.symm (ne_of_lt Hnk)) (ne_of_lt Hkm)))⁻¹ˡᵐ }
end
definition is_contr_submodules (H : is_built_from D E) (HD : is_contr D) (n : ) :
is_contr (E n) :=
begin
apply is_contr_left_of_short_exact_mod (ses H n),
exact is_contr_quotients_of_is_contr_total H HD n
end
definition is_contr_total (H : is_built_from D E) (HE : Πn, is_contr (E n)) : is_contr D :=
have is_contr (part H 0), from is_contr_quotients_of_is_contr_submodules H (λn H, HE n),
is_contr_equiv_closed (equiv_of_isomorphism (e0 H)) _
section int
open int
definition left_module_int_of_ab_group [constructor] (A : Type) [add_ab_group A] : left_module r A :=