move stuff about subgroups to subgroup
This commit is contained in:
parent
89d9bd10b6
commit
ec376b407e
3 changed files with 61 additions and 2 deletions
|
@ -189,6 +189,10 @@ LeftModule_of_AddAbGroup (dirsum' N) (λr n, dirsum_smul r n)
|
|||
dirsum_mul_smul
|
||||
dirsum_one_smul
|
||||
|
||||
/- homology of a graded module-homomorphism -/
|
||||
|
||||
|
||||
|
||||
/- exact couples -/
|
||||
|
||||
definition is_exact_gmod (f : M₁ →gm M₂) (f' : M₂ →gm M₃) : Type :=
|
||||
|
|
|
@ -21,7 +21,7 @@ namespace group
|
|||
definition homotopy_of_homomorphism_eq {f g : G →g G'}(p : f = g) : f ~ g :=
|
||||
λx : G , ap010 group_fun p x
|
||||
|
||||
definition quotient_rel (g h : G) : Prop := N (g * h⁻¹)
|
||||
definition quotient_rel [constructor] (g h : G) : Prop := N (g * h⁻¹)
|
||||
|
||||
variable {N}
|
||||
|
||||
|
|
|
@ -6,7 +6,7 @@ Authors: Floris van Doorn, Egbert Rijke
|
|||
Basic concepts of group theory
|
||||
-/
|
||||
|
||||
import algebra.group_theory
|
||||
import algebra.group_theory ..move_to_lib
|
||||
|
||||
open eq algebra is_trunc sigma sigma.ops prod trunc
|
||||
|
||||
|
@ -126,6 +126,7 @@ namespace group
|
|||
abbreviation subgroup_respect_inv [unfold 2] := @subgroup_rel.Rinv
|
||||
abbreviation is_normal_subgroup [unfold 2] := @normal_subgroup_rel.is_normal_subgroup
|
||||
|
||||
section
|
||||
variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}
|
||||
{A B : AbGroup}
|
||||
|
||||
|
@ -367,5 +368,59 @@ namespace group
|
|||
intro x,
|
||||
fapply image_incl_injective f x 1,
|
||||
end
|
||||
end
|
||||
|
||||
variables {G H K : Group} {R : subgroup_rel G} {S : subgroup_rel H} {T : subgroup_rel K}
|
||||
open function
|
||||
definition subgroup_functor_fun [unfold 7] (φ : G →g H) (h : Πg, R g → S (φ g)) (x : subgroup R) :
|
||||
subgroup S :=
|
||||
begin
|
||||
induction x with g hg,
|
||||
exact ⟨φ g, h g hg⟩
|
||||
end
|
||||
|
||||
definition subgroup_functor [constructor] (φ : G →g H)
|
||||
(h : Πg, R g → S (φ g)) : subgroup R →g subgroup S :=
|
||||
begin
|
||||
fapply homomorphism.mk,
|
||||
{ exact subgroup_functor_fun φ h },
|
||||
{ intro x₁ x₂, induction x₁ with g₁ hg₁, induction x₂ with g₂ hg₂,
|
||||
exact sigma_eq !to_respect_mul !is_prop.elimo }
|
||||
end
|
||||
|
||||
definition ab_subgroup_functor [constructor] {G H : AbGroup} {R : subgroup_rel G}
|
||||
{S : subgroup_rel H} (φ : G →g H)
|
||||
(h : Πg, R g → S (φ g)) : ab_subgroup R →g ab_subgroup S :=
|
||||
subgroup_functor φ h
|
||||
|
||||
theorem subgroup_functor_compose (ψ : H →g K) (φ : G →g H)
|
||||
(hψ : Πg, S g → T (ψ g)) (hφ : Πg, R g → S (φ g)) :
|
||||
subgroup_functor ψ hψ ∘g subgroup_functor φ hφ ~
|
||||
subgroup_functor (ψ ∘g φ) (λg, proof hψ (φ g) qed ∘ hφ g) :=
|
||||
begin
|
||||
intro g, induction g with g hg, reflexivity
|
||||
end
|
||||
|
||||
definition subgroup_functor_gid : subgroup_functor (gid G) (λg, id) ~ gid (subgroup R) :=
|
||||
begin
|
||||
intro g, induction g with g hg, reflexivity
|
||||
end
|
||||
|
||||
definition subgroup_functor_mul {G H : AbGroup} {R : subgroup_rel G} {S : subgroup_rel H}
|
||||
(ψ φ : G →g H) (hψ : Πg, R g → S (ψ g)) (hφ : Πg, R g → S (φ g)) :
|
||||
homomorphism_mul (ab_subgroup_functor ψ hψ) (ab_subgroup_functor φ hφ) ~
|
||||
ab_subgroup_functor (homomorphism_mul ψ φ)
|
||||
(λg hg, subgroup_respect_mul S (hψ g hg) (hφ g hg)) :=
|
||||
begin
|
||||
intro g, induction g with g hg, reflexivity
|
||||
end
|
||||
|
||||
definition subgroup_functor_homotopy {ψ φ : G →g H} (hψ : Πg, R g → S (ψ g))
|
||||
(hφ : Πg, R g → S (φ g)) (p : φ ~ ψ) :
|
||||
subgroup_functor φ hφ ~ subgroup_functor ψ hψ :=
|
||||
begin
|
||||
intro g, induction g with g hg,
|
||||
exact subtype_eq (p g)
|
||||
end
|
||||
|
||||
end group
|
||||
|
|
Loading…
Reference in a new issue