work of fiber of maps between EM-spaces
This commit is contained in:
parent
d0995af5b5
commit
ee11b1cfb9
2 changed files with 163 additions and 30 deletions
|
@ -5,8 +5,8 @@ Authors: Jeremy Avigad
|
||||||
|
|
||||||
Short exact sequences
|
Short exact sequences
|
||||||
-/
|
-/
|
||||||
import homotopy.chain_complex eq2
|
import homotopy.chain_complex eq2 .quotient_group
|
||||||
open pointed is_trunc equiv is_equiv eq algebra group trunc function
|
open pointed is_trunc equiv is_equiv eq algebra group trunc function fiber sigma
|
||||||
|
|
||||||
structure is_exact_t {A B : Type} {C : Type*} (f : A → B) (g : B → C) :=
|
structure is_exact_t {A B : Type} {C : Type*} (f : A → B) (g : B → C) :=
|
||||||
( im_in_ker : Π(a:A), g (f a) = pt)
|
( im_in_ker : Π(a:A), g (f a) = pt)
|
||||||
|
@ -34,7 +34,6 @@ begin
|
||||||
induction h with a p, exact ap g p⁻¹ ⬝ is_exact.im_in_ker H a
|
induction h with a p, exact ap g p⁻¹ ⬝ is_exact.im_in_ker H a
|
||||||
end
|
end
|
||||||
|
|
||||||
-- TO DO: give less univalency proof
|
|
||||||
definition is_exact_homotopy {A B : Type} {C : Type*} {f f' : A → B} {g g' : B → C}
|
definition is_exact_homotopy {A B : Type} {C : Type*} {f f' : A → B} {g g' : B → C}
|
||||||
(p : f ~ f') (q : g ~ g') (H : is_exact f g) : is_exact f' g' :=
|
(p : f ~ f') (q : g ~ g') (H : is_exact f g) : is_exact f' g' :=
|
||||||
begin
|
begin
|
||||||
|
@ -54,8 +53,8 @@ begin
|
||||||
exact image.mk (tr a) (ap tr r) }
|
exact image.mk (tr a) (ap tr r) }
|
||||||
end
|
end
|
||||||
|
|
||||||
definition is_contr_middle_of_is_exact {A B : Type} {C : Type*} {f : A → B} {g : B → C} (H : is_exact f g)
|
definition is_contr_middle_of_is_exact {A B : Type} {C : Type*} {f : A → B} {g : B → C}
|
||||||
[is_contr A] [is_set B] [is_contr C] : is_contr B :=
|
(H : is_exact f g) [is_contr A] [is_set B] [is_contr C] : is_contr B :=
|
||||||
begin
|
begin
|
||||||
apply is_contr.mk (f pt),
|
apply is_contr.mk (f pt),
|
||||||
intro b,
|
intro b,
|
||||||
|
@ -67,6 +66,99 @@ definition is_surjective_of_is_exact_of_is_contr {A B : Type} {C : Type*} {f : A
|
||||||
(H : is_exact f g) [is_contr C] : is_surjective f :=
|
(H : is_exact f g) [is_contr C] : is_surjective f :=
|
||||||
λb, is_exact.ker_in_im H b !is_prop.elim
|
λb, is_exact.ker_in_im H b !is_prop.elim
|
||||||
|
|
||||||
|
definition is_embedding_of_is_exact_g {A B C : Group} {g : B →g C} {f : A →g B}
|
||||||
|
(gf : is_exact_g f g) [is_contr A] : is_embedding g :=
|
||||||
|
begin
|
||||||
|
apply to_is_embedding_homomorphism, intro a p,
|
||||||
|
induction is_exact.ker_in_im gf a p with x q,
|
||||||
|
exact q⁻¹ ⬝ ap f !is_prop.elim ⬝ to_respect_one f
|
||||||
|
end
|
||||||
|
|
||||||
|
definition map_left_of_is_exact {G₃' G₃ G₂ : Type} {G₁ : Type*}
|
||||||
|
{g : G₃ → G₂} {g' : G₃' → G₂} {f : G₂ → G₁} (H1 : is_exact g f) (H2 : is_exact g' f)
|
||||||
|
(Hg' : is_embedding g') : G₃ → G₃' :=
|
||||||
|
begin
|
||||||
|
intro a,
|
||||||
|
have fiber g' (g a),
|
||||||
|
begin
|
||||||
|
have is_prop (fiber g' (g a)), from !is_prop_fiber_of_is_embedding,
|
||||||
|
induction is_exact.ker_in_im H2 (g a) (is_exact.im_in_ker H1 a) with a' p,
|
||||||
|
exact fiber.mk a' p
|
||||||
|
end,
|
||||||
|
exact point this
|
||||||
|
end
|
||||||
|
|
||||||
|
definition map_left_of_is_exact_compute {G₃' G₃ G₂ : Type} {G₁ : Type*}
|
||||||
|
{g : G₃ → G₂} {g' : G₃' → G₂} {f : G₂ → G₁} (H1 : is_exact g f) (H2 : is_exact g' f)
|
||||||
|
(Hg' : is_embedding g') (a : G₃) : g' (map_left_of_is_exact H1 H2 Hg' a) = g a :=
|
||||||
|
@point_eq _ _ g' _ _
|
||||||
|
|
||||||
|
definition map_left_of_is_exact_compose {G₃'' G₃' G₃ G₂ : Type} {G₁ : Type*}
|
||||||
|
{g : G₃ → G₂} {g' : G₃' → G₂} {g'' : G₃'' → G₂} {f : G₂ → G₁}
|
||||||
|
(H1 : is_exact g f) (H2 : is_exact g' f) (H3 : is_exact g'' f)
|
||||||
|
(Hg' : is_embedding g') (Hg'' : is_embedding g'') (a : G₃) :
|
||||||
|
map_left_of_is_exact H2 H3 Hg'' (map_left_of_is_exact H1 H2 Hg' a) =
|
||||||
|
map_left_of_is_exact H1 H3 Hg'' a :=
|
||||||
|
begin
|
||||||
|
refine @is_injective_of_is_embedding _ _ g'' _ _ _ _,
|
||||||
|
refine !map_left_of_is_exact_compute ⬝ _ ⬝ !map_left_of_is_exact_compute⁻¹,
|
||||||
|
exact map_left_of_is_exact_compute H1 H2 Hg' a
|
||||||
|
end
|
||||||
|
|
||||||
|
definition map_left_of_is_exact_id {G₃ G₂ : Type} {G₁ : Type*}
|
||||||
|
{g : G₃ → G₂} {f : G₂ → G₁} (H1 : is_exact g f) (Hg : is_embedding g) (a : G₃) :
|
||||||
|
map_left_of_is_exact H1 H1 Hg a = a :=
|
||||||
|
begin
|
||||||
|
refine @is_injective_of_is_embedding _ _ g _ _ _ _,
|
||||||
|
exact map_left_of_is_exact_compute H1 H1 Hg a
|
||||||
|
end
|
||||||
|
|
||||||
|
definition map_left_of_is_exact_homotopy {G₃' G₃ G₂ : Type} {G₁ : Type*}
|
||||||
|
{g : G₃ → G₂} {g' g'' : G₃' → G₂} {f : G₂ → G₁} (H1 : is_exact g f) (H2 : is_exact g' f)
|
||||||
|
(H3 : is_exact g'' f) (Hg' : is_embedding g') (Hg'' : is_embedding g'') (p : g' ~ g'') :
|
||||||
|
map_left_of_is_exact H1 H2 Hg' ~ map_left_of_is_exact H1 H3 Hg'' :=
|
||||||
|
begin
|
||||||
|
intro a,
|
||||||
|
refine @is_injective_of_is_embedding _ _ g' _ _ _ _,
|
||||||
|
exact !map_left_of_is_exact_compute ⬝ (!p ⬝ !map_left_of_is_exact_compute)⁻¹,
|
||||||
|
end
|
||||||
|
|
||||||
|
definition homomorphism_left_of_is_exact_g {G₃' G₃ G₂ G₁ : Group}
|
||||||
|
{g : G₃ →g G₂} {g' : G₃' →g G₂} {f : G₂ →g G₁} (H1 : is_exact_g g f) (H2 : is_exact_g g' f)
|
||||||
|
(Hg' : is_embedding g') : G₃ →g G₃' :=
|
||||||
|
begin
|
||||||
|
apply homomorphism.mk (map_left_of_is_exact H1 H2 Hg'),
|
||||||
|
{ intro a a', refine @is_injective_of_is_embedding _ _ g' _ _ _ _,
|
||||||
|
exact !point_eq ⬝ to_respect_mul g a a' ⬝
|
||||||
|
(to_respect_mul g' _ _ ⬝ ap011 mul !point_eq !point_eq)⁻¹ }
|
||||||
|
end
|
||||||
|
|
||||||
|
definition isomorphism_left_of_is_exact_g {G₃' G₃ G₂ G₁ : Group}
|
||||||
|
{g : G₃ →g G₂} {g' : G₃' →g G₂} {f : G₂ →g G₁} (H1 : is_exact g f) (H2 : is_exact g' f)
|
||||||
|
(Hg : is_embedding g) (Hg' : is_embedding g') : G₃ ≃g G₃' :=
|
||||||
|
begin
|
||||||
|
fapply isomorphism.mk, exact homomorphism_left_of_is_exact_g H1 H2 Hg',
|
||||||
|
fapply adjointify, exact homomorphism_left_of_is_exact_g H2 H1 Hg,
|
||||||
|
{ intro a, refine @is_injective_of_is_embedding _ _ g' _ _ _ _,
|
||||||
|
refine map_left_of_is_exact_compute H1 H2 Hg' _ ⬝ map_left_of_is_exact_compute H2 H1 Hg a },
|
||||||
|
{ intro a, refine @is_injective_of_is_embedding _ _ g _ _ _ _,
|
||||||
|
refine map_left_of_is_exact_compute H2 H1 Hg _ ⬝ map_left_of_is_exact_compute H1 H2 Hg' a },
|
||||||
|
end
|
||||||
|
|
||||||
|
definition is_exact_incl_of_subgroup {G H : Group} (f : G →g H) :
|
||||||
|
is_exact (incl_of_subgroup (kernel_subgroup f)) f :=
|
||||||
|
begin
|
||||||
|
apply is_exact.mk,
|
||||||
|
{ intro x, cases x with x p, exact p },
|
||||||
|
{ intro x p, exact image.mk ⟨x, p⟩ idp }
|
||||||
|
end
|
||||||
|
|
||||||
|
definition isomorphism_kernel_of_is_exact {G₄ G₃ G₂ G₁ : Group}
|
||||||
|
{h : G₄ →g G₃} {g : G₃ →g G₂} {f : G₂ →g G₁} (H1 : is_exact h g) (H2 : is_exact g f)
|
||||||
|
(HG : is_contr G₄) : G₃ ≃g kernel f :=
|
||||||
|
isomorphism_left_of_is_exact_g H2 (is_exact_incl_of_subgroup f)
|
||||||
|
(is_embedding_of_is_exact_g H1) (is_embedding_incl_of_subgroup _)
|
||||||
|
|
||||||
section chain_complex
|
section chain_complex
|
||||||
open succ_str chain_complex
|
open succ_str chain_complex
|
||||||
definition is_exact_of_is_exact_at {N : succ_str} {A : chain_complex N} {n : N}
|
definition is_exact_of_is_exact_at {N : succ_str} {A : chain_complex N} {n : N}
|
||||||
|
@ -89,12 +181,10 @@ structure is_short_exact_t {A B : Type} {C : Type*} (f : A → B) (g : B → C)
|
||||||
lemma is_short_exact_of_is_exact {X A B C Y : Group}
|
lemma is_short_exact_of_is_exact {X A B C Y : Group}
|
||||||
(k : X →g A) (f : A →g B) (g : B →g C) (l : C →g Y)
|
(k : X →g A) (f : A →g B) (g : B →g C) (l : C →g Y)
|
||||||
(hX : is_contr X) (hY : is_contr Y)
|
(hX : is_contr X) (hY : is_contr Y)
|
||||||
(kf : is_exact k f) (fg : is_exact f g) (gl : is_exact g l) : is_short_exact f g :=
|
(kf : is_exact_g k f) (fg : is_exact_g f g) (gl : is_exact_g g l) : is_short_exact f g :=
|
||||||
begin
|
begin
|
||||||
constructor,
|
constructor,
|
||||||
{ apply to_is_embedding_homomorphism, intro a p,
|
{ exact is_embedding_of_is_exact_g kf },
|
||||||
induction is_exact.ker_in_im kf a p with x q,
|
|
||||||
exact q⁻¹ ⬝ ap k !is_prop.elim ⬝ to_respect_one k },
|
|
||||||
{ exact is_exact.im_in_ker fg },
|
{ exact is_exact.im_in_ker fg },
|
||||||
{ exact is_exact.ker_in_im fg },
|
{ exact is_exact.ker_in_im fg },
|
||||||
{ intro c, exact is_exact.ker_in_im gl c !is_prop.elim },
|
{ intro c, exact is_exact.ker_in_im gl c !is_prop.elim },
|
||||||
|
@ -129,4 +219,46 @@ begin
|
||||||
{ exact is_short_exact.ker_in_im H }
|
{ exact is_short_exact.ker_in_im H }
|
||||||
end
|
end
|
||||||
|
|
||||||
|
/- TODO: move and remove other versions -/
|
||||||
|
|
||||||
|
definition is_surjective_qg_map {A : Group} (N : normal_subgroup_rel A) :
|
||||||
|
is_surjective (qg_map N) :=
|
||||||
|
begin
|
||||||
|
intro x, induction x,
|
||||||
|
fapply image.mk,
|
||||||
|
exact a, reflexivity,
|
||||||
|
apply is_prop.elimo
|
||||||
|
end
|
||||||
|
|
||||||
|
definition is_surjective_ab_qg_map {A : AbGroup} (N : subgroup_rel A) :
|
||||||
|
is_surjective (ab_qg_map N) :=
|
||||||
|
is_surjective_qg_map _
|
||||||
|
|
||||||
|
definition qg_map_eq_one {A : Group} {K : normal_subgroup_rel A} (g : A) (H : K g) :
|
||||||
|
qg_map K g = 1 :=
|
||||||
|
begin
|
||||||
|
apply set_quotient.eq_of_rel,
|
||||||
|
have e : g * 1⁻¹ = g,
|
||||||
|
from calc
|
||||||
|
g * 1⁻¹ = g * 1 : one_inv
|
||||||
|
... = g : mul_one,
|
||||||
|
exact transport (λx, K x) e⁻¹ H
|
||||||
|
end
|
||||||
|
|
||||||
|
definition ab_qg_map_eq_one {A : AbGroup} {K : subgroup_rel A} (g : A) (H : K g) :
|
||||||
|
ab_qg_map K g = 1 :=
|
||||||
|
qg_map_eq_one g H
|
||||||
|
|
||||||
|
definition is_short_exact_normal_subgroup {G : Group} (S : normal_subgroup_rel G) :
|
||||||
|
is_short_exact (incl_of_subgroup S) (qg_map S) :=
|
||||||
|
begin
|
||||||
|
fconstructor,
|
||||||
|
{ exact is_embedding_incl_of_subgroup S },
|
||||||
|
{ intro a, fapply qg_map_eq_one, induction a with b p, exact p },
|
||||||
|
{ intro b p, fapply image.mk,
|
||||||
|
{ apply sigma.mk b, fapply rel_of_qg_map_eq_one, exact p },
|
||||||
|
reflexivity },
|
||||||
|
{ exact is_surjective_qg_map S },
|
||||||
|
end
|
||||||
|
|
||||||
end algebra
|
end algebra
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
-- Authors: Floris van Doorn
|
-- Authors: Floris van Doorn
|
||||||
|
|
||||||
import homotopy.EM algebra.category.functor.equivalence types.pointed2 ..pointed_pi ..pointed
|
import homotopy.EM algebra.category.functor.equivalence types.pointed2 ..pointed_pi ..pointed
|
||||||
..move_to_lib .susp ..algebra.quotient_group
|
..move_to_lib .susp ..algebra.exactness
|
||||||
|
|
||||||
open eq equiv is_equiv algebra group nat pointed EM.ops is_trunc trunc susp function is_conn
|
open eq equiv is_equiv algebra group nat pointed EM.ops is_trunc trunc susp function is_conn
|
||||||
|
|
||||||
|
@ -620,31 +620,32 @@ namespace EM
|
||||||
apply is_conn_fiber, apply is_conn_of_is_conn_succ
|
apply is_conn_fiber, apply is_conn_of_is_conn_succ
|
||||||
end
|
end
|
||||||
|
|
||||||
section --move
|
section
|
||||||
open chain_complex succ_str
|
open chain_complex prod fin
|
||||||
-- definition isomorphism_kernel_of_trivial {N : succ_str} (X : chain_complex N) {n : N}
|
|
||||||
-- (H1 : is_exact_at X n) (H2 : is_exact_at X (S n))
|
|
||||||
-- (HX1 : is_contr (X n)) (HG2 : pgroup (X (S n)))
|
|
||||||
-- : Group_of_pgroup (X (S n)) ≃g kernel (homomorphism.mk (cc_to_fn X _) _) :=
|
|
||||||
-- _
|
|
||||||
|
|
||||||
|
/- TODO: other cases -/
|
||||||
|
definition LES_isomorphism_kernel_of_trivial.{u}
|
||||||
|
{X Y : pType.{u}} (f : X →* Y) (n : ℕ) [H : is_succ n]
|
||||||
|
(H1 : is_contr (πg[n+1] Y)) : πg[n] (pfiber f) ≃g kernel (π→g[n] f) :=
|
||||||
|
begin
|
||||||
|
induction H with n,
|
||||||
|
have H2 : is_exact (π→g[n+1] (ppoint f)) (π→g[n+1] f),
|
||||||
|
from is_exact_of_is_exact_at (is_exact_LES_of_homotopy_groups f (n+1, 0)),
|
||||||
|
have H3 : is_exact (π→g[n+1] (boundary_map f) ∘g ghomotopy_group_succ_in Y n)
|
||||||
|
(π→g[n+1] (ppoint f)),
|
||||||
|
from is_exact_of_is_exact_at (is_exact_LES_of_homotopy_groups f (n+1, 1)),
|
||||||
|
exact isomorphism_kernel_of_is_exact H3 H2 H1
|
||||||
|
end
|
||||||
|
|
||||||
end
|
end
|
||||||
-- definition is_equiv_of_trivial (X : chain_complex N) {n : N}
|
|
||||||
-- (H1 : is_exact_at X n) (H2 : is_exact_at X (S n))
|
|
||||||
-- [HX1 : is_contr (X n)] [HX2 : is_contr (X (S (S (S n))))]
|
|
||||||
-- [pgroup (X (S n))] [pgroup (X (S (S n)))] [is_mul_hom (cc_to_fn X (S n))]
|
|
||||||
-- : is_equiv (cc_to_fn X (S n)) :=
|
|
||||||
-- begin
|
|
||||||
-- apply is_equiv_of_is_surjective_of_is_embedding,
|
|
||||||
-- { apply is_embedding_of_trivial X, apply H2},
|
|
||||||
-- { apply is_surjective_of_trivial X, apply H1},
|
|
||||||
-- end
|
|
||||||
|
|
||||||
|
open group algebra is_trunc
|
||||||
open group algebra
|
definition homotopy_group_fiber_EM1_functor.{u} {G H : Group.{u}} (φ : G →g H) :
|
||||||
definition homotopy_group_fiber_EM1_functor {G H : Group} (φ : G →g H) :
|
|
||||||
π₁ (pfiber (EM1_functor φ)) ≃g kernel φ :=
|
π₁ (pfiber (EM1_functor φ)) ≃g kernel φ :=
|
||||||
|
have H1 : is_trunc 1 (EM1 H), from sorry,
|
||||||
|
have H2 : 1 <[ℕ] 1 + 1, from sorry,
|
||||||
|
LES_isomorphism_kernel_of_trivial (EM1_functor φ) 1
|
||||||
|
(@trivial_homotopy_group_of_is_trunc _ 1 2 H1 H2) ⬝g
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
definition homotopy_group_fiber_EMadd1_functor {G H : AbGroup} (φ : G →g H) (n : ℕ) :
|
definition homotopy_group_fiber_EMadd1_functor {G H : AbGroup} (φ : G →g H) (n : ℕ) :
|
||||||
|
|
Loading…
Reference in a new issue