diff --git a/cohomology/serre.hlean b/cohomology/serre.hlean index 8d986f0..943c34c 100644 --- a/cohomology/serre.hlean +++ b/cohomology/serre.hlean @@ -209,14 +209,12 @@ end unreduced_atiyah_hirzebruch section serre universe variable u - variables {X : Type} (x₀ : X) (F : X → Type) - {X₁ X₂ : pType.{u}} (f : X₁ →* X₂) - {Z₁ Z₂ : Type.{u}} (g : Z₁ → Z₂) + variables {X B : Type.{u}} (b₀ : B) (F : B → Type) (f : X → B) (Y : spectrum) (s₀ : ℤ) (H : is_strunc s₀ Y) include H definition serre_convergence : - (λn s, uopH^-(n-s)[(x : X), uH^-s[F x, Y]]) ⟹ᵍ (λn, uH^-n[Σ(x : X), F x, Y]) := + (λn s, uopH^-(n-s)[(b : B), uH^-s[F b, Y]]) ⟹ᵍ (λn, uH^-n[Σ(b : B), F b, Y]) := proof converges_to_g_isomorphism (unreduced_atiyah_hirzebruch_convergence @@ -237,29 +235,29 @@ section serre end qed - definition serre_convergence_of_map : - (λn s, uopH^-(n-s)[(x : Z₂), uH^-s[fiber g x, Y]]) ⟹ᵍ (λn, uH^-n[Z₁, Y]) := + definition serre_convergence_map : + (λn s, uopH^-(n-s)[(b : B), uH^-s[fiber f b, Y]]) ⟹ᵍ (λn, uH^-n[X, Y]) := proof converges_to_g_isomorphism - (serre_convergence (fiber g) Y s₀ H) + (serre_convergence (fiber f) Y s₀ H) begin intro n s, reflexivity end begin intro n, apply unreduced_cohomology_isomorphism, exact !sigma_fiber_equiv⁻¹ᵉ end qed - definition serre_convergence_of_is_conn (H2 : is_conn 1 X) : - (λn s, uoH^-(n-s)[X, uH^-s[F x₀, Y]]) ⟹ᵍ (λn, uH^-n[Σ(x : X), F x, Y]) := + definition serre_convergence_of_is_conn (H2 : is_conn 1 B) : + (λn s, uoH^-(n-s)[B, uH^-s[F b₀, Y]]) ⟹ᵍ (λn, uH^-n[Σ(b : B), F b, Y]) := proof converges_to_g_isomorphism (serre_convergence F Y s₀ H) - begin intro n s, exact @uopH_isomorphism_uoH_of_is_conn (pointed.MK X x₀) _ _ H2 end + begin intro n s, exact @uopH_isomorphism_uoH_of_is_conn (pointed.MK B b₀) _ _ H2 end begin intro n, reflexivity end qed - definition serre_convergence_of_pmap (H2 : is_conn 1 X₂) : - (λn s, uoH^-(n-s)[X₂, uH^-s[pfiber f, Y]]) ⟹ᵍ (λn, uH^-n[X₁, Y]) := + definition serre_convergence_map_of_is_conn (H2 : is_conn 1 B) : + (λn s, uoH^-(n-s)[B, uH^-s[fiber f b₀, Y]]) ⟹ᵍ (λn, uH^-n[X, Y]) := proof converges_to_g_isomorphism - (serre_convergence_of_is_conn pt (fiber f) Y s₀ H H2) + (serre_convergence_of_is_conn b₀ (fiber f) Y s₀ H H2) begin intro n s, reflexivity end begin intro n, apply unreduced_cohomology_isomorphism, exact !sigma_fiber_equiv⁻¹ᵉ end qed