conjecture about prespectrification
This commit is contained in:
parent
b419e9c8f7
commit
f4e74687f9
1 changed files with 43 additions and 1 deletions
|
@ -45,7 +45,7 @@ gen_spectrum.mk Y e
|
||||||
|
|
||||||
namespace spectrum
|
namespace spectrum
|
||||||
|
|
||||||
definition glue {{N : succ_str}} := @gen_prespectrum.glue N
|
definition glue [unfold 2] {{N : succ_str}} := @gen_prespectrum.glue N
|
||||||
--definition glue := (@gen_prespectrum.glue +ℤ)
|
--definition glue := (@gen_prespectrum.glue +ℤ)
|
||||||
definition equiv_glue {N : succ_str} (E : gen_prespectrum N) [H : is_spectrum E] (n:N) : (E n) ≃* (Ω (E (S n))) :=
|
definition equiv_glue {N : succ_str} (E : gen_prespectrum N) [H : is_spectrum E] (n:N) : (E n) ≃* (Ω (E (S n))) :=
|
||||||
pequiv_of_pmap (glue E n) (is_spectrum.is_equiv_glue E n)
|
pequiv_of_pmap (glue E n) (is_spectrum.is_equiv_glue E n)
|
||||||
|
@ -240,6 +240,10 @@ namespace spectrum
|
||||||
definition psp_susp (X : Type*) : gen_prespectrum +ℕ :=
|
definition psp_susp (X : Type*) : gen_prespectrum +ℕ :=
|
||||||
gen_prespectrum.mk (λn, psuspn n X) (λn, loop_psusp_unit (psuspn n X))
|
gen_prespectrum.mk (λn, psuspn n X) (λn, loop_psusp_unit (psuspn n X))
|
||||||
|
|
||||||
|
-- The sphere prespectrum
|
||||||
|
definition psp_sphere : gen_prespectrum +ℕ :=
|
||||||
|
psp_susp bool.pbool
|
||||||
|
|
||||||
/- Truncations -/
|
/- Truncations -/
|
||||||
|
|
||||||
-- We could truncate prespectra too, but since the operation
|
-- We could truncate prespectra too, but since the operation
|
||||||
|
@ -445,6 +449,44 @@ namespace spectrum
|
||||||
/- Mapping spectra -/
|
/- Mapping spectra -/
|
||||||
-- note: see also cotensor above
|
-- note: see also cotensor above
|
||||||
|
|
||||||
|
/- Prespectrification -/
|
||||||
|
|
||||||
|
definition prespectrify [constructor] {N : succ_str} (X : gen_prespectrum N) : gen_prespectrum N :=
|
||||||
|
gen_prespectrum.mk (λ n, Ω (X (S n))) (λ n, Ω→ (glue X (S n)))
|
||||||
|
|
||||||
|
definition to_prespectrify {N : succ_str} (X : gen_prespectrum N) : X →ₛ prespectrify X :=
|
||||||
|
begin
|
||||||
|
fapply smap.mk,
|
||||||
|
exact glue X,
|
||||||
|
intro n, fapply psquare_of_phomotopy, reflexivity
|
||||||
|
end
|
||||||
|
|
||||||
|
definition is_leftmap_to_prespectrify_inv {N : succ_str} (X : gen_prespectrum N) (E : gen_spectrum N) : X →ₛ gen_spectrum.to_prespectrum E → prespectrify X →ₛ gen_spectrum.to_prespectrum E :=
|
||||||
|
begin
|
||||||
|
intro f,
|
||||||
|
fapply smap.mk,
|
||||||
|
intro n, exact (equiv_glue E n)⁻¹ᵉ* ∘* Ω→ (f (S n)),
|
||||||
|
intro n, fapply psquare_of_phomotopy,
|
||||||
|
refine (passoc (glue (gen_spectrum.to_prespectrum E) n) (pequiv.to_pmap
|
||||||
|
(equiv_glue (gen_spectrum.to_prespectrum E) n)⁻¹ᵉ*) (Ω→ (to_fun f (S n))))⁻¹* ⬝* _,
|
||||||
|
refine pwhisker_right (Ω→ (to_fun f (S n))) (pright_inv (equiv_glue E n)) ⬝* _,
|
||||||
|
|
||||||
|
repeat exact sorry
|
||||||
|
end
|
||||||
|
|
||||||
|
definition is_leftmap_to_prespectrify {N : succ_str} (X : gen_prespectrum N) (E : gen_spectrum N) :
|
||||||
|
is_equiv (λ (f : prespectrify X →ₛ E), f ∘ₛ to_prespectrify X) :=
|
||||||
|
begin
|
||||||
|
fapply adjointify,
|
||||||
|
exact is_leftmap_to_prespectrify_inv X E,
|
||||||
|
repeat exact sorry
|
||||||
|
end
|
||||||
|
|
||||||
|
-- Conjecture
|
||||||
|
definition is_spectrum_of_local (E : gen_spectrum +ℕ) (Hyp : is_equiv (λ (f : prespectrify (psp_sphere) →ₛ E), f ∘ₛ to_prespectrify (psp_sphere))) : is_spectrum E :=
|
||||||
|
begin
|
||||||
|
exact sorry
|
||||||
|
end
|
||||||
|
|
||||||
/- Spectrification -/
|
/- Spectrification -/
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue