conjecture about prespectrification

This commit is contained in:
Egbert Rijke 2017-06-28 15:49:46 +01:00
parent b419e9c8f7
commit f4e74687f9

View file

@ -45,7 +45,7 @@ gen_spectrum.mk Y e
namespace spectrum
definition glue {{N : succ_str}} := @gen_prespectrum.glue N
definition glue [unfold 2] {{N : succ_str}} := @gen_prespectrum.glue N
--definition glue := (@gen_prespectrum.glue +)
definition equiv_glue {N : succ_str} (E : gen_prespectrum N) [H : is_spectrum E] (n:N) : (E n) ≃* (Ω (E (S n))) :=
pequiv_of_pmap (glue E n) (is_spectrum.is_equiv_glue E n)
@ -240,6 +240,10 @@ namespace spectrum
definition psp_susp (X : Type*) : gen_prespectrum + :=
gen_prespectrum.mk (λn, psuspn n X) (λn, loop_psusp_unit (psuspn n X))
-- The sphere prespectrum
definition psp_sphere : gen_prespectrum + :=
psp_susp bool.pbool
/- Truncations -/
-- We could truncate prespectra too, but since the operation
@ -445,6 +449,44 @@ namespace spectrum
/- Mapping spectra -/
-- note: see also cotensor above
/- Prespectrification -/
definition prespectrify [constructor] {N : succ_str} (X : gen_prespectrum N) : gen_prespectrum N :=
gen_prespectrum.mk (λ n, Ω (X (S n))) (λ n, Ω→ (glue X (S n)))
definition to_prespectrify {N : succ_str} (X : gen_prespectrum N) : X →ₛ prespectrify X :=
begin
fapply smap.mk,
exact glue X,
intro n, fapply psquare_of_phomotopy, reflexivity
end
definition is_leftmap_to_prespectrify_inv {N : succ_str} (X : gen_prespectrum N) (E : gen_spectrum N) : X →ₛ gen_spectrum.to_prespectrum E → prespectrify X →ₛ gen_spectrum.to_prespectrum E :=
begin
intro f,
fapply smap.mk,
intro n, exact (equiv_glue E n)⁻¹ᵉ* ∘* Ω→ (f (S n)),
intro n, fapply psquare_of_phomotopy,
refine (passoc (glue (gen_spectrum.to_prespectrum E) n) (pequiv.to_pmap
(equiv_glue (gen_spectrum.to_prespectrum E) n)⁻¹ᵉ*) (Ω→ (to_fun f (S n))))⁻¹* ⬝* _,
refine pwhisker_right (Ω→ (to_fun f (S n))) (pright_inv (equiv_glue E n)) ⬝* _,
repeat exact sorry
end
definition is_leftmap_to_prespectrify {N : succ_str} (X : gen_prespectrum N) (E : gen_spectrum N) :
is_equiv (λ (f : prespectrify X →ₛ E), f ∘ₛ to_prespectrify X) :=
begin
fapply adjointify,
exact is_leftmap_to_prespectrify_inv X E,
repeat exact sorry
end
-- Conjecture
definition is_spectrum_of_local (E : gen_spectrum +) (Hyp : is_equiv (λ (f : prespectrify (psp_sphere) →ₛ E), f ∘ₛ to_prespectrify (psp_sphere))) : is_spectrum E :=
begin
exact sorry
end
/- Spectrification -/