From f54011335d9b0d8797338e35410339fc931bbfa5 Mon Sep 17 00:00:00 2001 From: Floris van Doorn Date: Sat, 1 Jul 2017 20:02:31 +0100 Subject: [PATCH] define atiyah-hirzebruch exact couple this commit also defines str and strunc_elim proving that the exact couple is bounded, and that it converges to the right this is still todo --- homotopy/serre.hlean | 89 ++++++++++++------------------- homotopy/strunc.hlean | 119 ++++++++++++++++++++++++++++++------------ move_to_lib.hlean | 78 +++++++++++++++++---------- pointed.hlean | 7 ++- 4 files changed, 177 insertions(+), 116 deletions(-) diff --git a/homotopy/serre.hlean b/homotopy/serre.hlean index 4946217..eb19084 100644 --- a/homotopy/serre.hlean +++ b/homotopy/serre.hlean @@ -1,6 +1,6 @@ import ..algebra.module_exact_couple .strunc -open eq spectrum trunc is_trunc pointed int EM algebra left_module fiber lift +open eq spectrum trunc is_trunc pointed int EM algebra left_module fiber lift equiv is_equiv /- Eilenberg MacLane spaces are the fibers of the Postnikov system of a type -/ @@ -37,6 +37,14 @@ definition postnikov_map_natural {A B : Type*} (f : A →* B) (n : ℕ₋₂) : (ptrunc_functor (n.+1) f) (ptrunc_functor n f) := !ptrunc_functor_postnikov_map ⬝* !ptrunc_elim_ptrunc_functor⁻¹* +definition is_equiv_postnikov_map (A : Type*) {n k : ℕ₋₂} [HA : is_trunc k A] (H : k ≤ n) : + is_equiv (postnikov_map A n) := +begin + apply is_equiv_of_equiv_of_homotopy + (ptrunc_pequiv_ptrunc_of_is_trunc (trunc_index.le.step H) H HA), + intro x, induction x, reflexivity +end + definition encode_ap1_gen_tr (n : ℕ₋₂) {A : Type*} {a a' : A} (p : a = a') : trunc.encode (ap1_gen tr idp idp p) = tr p :> trunc n (a = a') := by induction p; reflexivity @@ -54,63 +62,34 @@ begin end, this⁻¹ᵛ* +definition is_strunc_strunc_pred (X : spectrum) (k : ℤ) : is_strunc k (strunc (k - 1) X) := +λn, @(is_trunc_of_le _ (maxm2_monotone (add_le_add_right (sub_one_le k) n))) !is_strunc_strunc --- definition postnikov_map_int (X : Type*) (k : ℤ) : --- ptrunc (maxm2 (k + 1)) X →* ptrunc (maxm2 k) X := --- begin --- induction k with k k, --- exact postnikov_map X k, --- exact !pconst --- end +definition postnikov_smap [constructor] (X : spectrum) (k : ℤ) : + strunc k X →ₛ strunc (k - 1) X := +strunc_elim (str (k - 1) X) (is_strunc_strunc_pred X k) --- definition postnikov_map_int_natural {A B : Type*} (f : A →* B) (k : ℤ) : --- psquare (postnikov_map_int A k) (postnikov_map_int B k) --- (ptrunc_int_functor (k+1) f) (ptrunc_int_functor k f) := --- begin --- induction k with k k, --- exact postnikov_map_natural f k, --- apply psquare_of_phomotopy, exact !pcompose_pconst ⬝* !pconst_pcompose⁻¹* --- end +definition postnikov_smap_phomotopy [constructor] (X : spectrum) (k : ℤ) (n : ℤ) : + postnikov_smap X k n ~* postnikov_map (X n) (maxm2 (k - 1 + n)) ∘* + sorry := +sorry --- definition postnikov_map_int_natural_pequiv {A B : Type*} (f : A ≃* B) (k : ℤ) : --- psquare (postnikov_map_int A k) (postnikov_map_int B k) --- (ptrunc_int_pequiv_ptrunc_int (k+1) f) (ptrunc_int_pequiv_ptrunc_int k f) := --- begin --- induction k with k k, --- exact postnikov_map_natural f k, --- apply psquare_of_phomotopy, exact !pcompose_pconst ⬝* !pconst_pcompose⁻¹* --- end +section atiyah_hirzebruch + parameters {X : Type*} (Y : X → spectrum) (s₀ : ℤ) (H : Πx, is_strunc s₀ (Y x)) --- definition pequiv_ap_natural2 {X A : Type} (B C : X → A → Type*) {a a' : X → A} --- (p : a ~ a') --- (s : X → X) (f : Πx a, B x a →* C (s x) a) (x : X) : --- psquare (pequiv_ap (B x) (p x)) (pequiv_ap (C (s x)) (p x)) (f x (a x)) (f x (a' x)) := --- begin induction p using homotopy.rec_on_idp, exact phrfl end + definition atiyah_hirzebruch_exact_couple : exact_couple rℤ Z2 := + @exact_couple_sequence (λs, strunc s (spi X Y)) (postnikov_smap (spi X Y)) --- definition pequiv_ap_natural3 {X A : Type} (B C : X → A → Type*) {a a' : A} --- (p : a = a') --- (s : X → X) (x : X) (f : Πx a, B x a →* C (s x) a) : --- psquare (pequiv_ap (B x) p) (pequiv_ap (C (s x)) p) (f x a) (f x a') := --- begin induction p, exact phrfl end + definition is_bounded_atiyah_hirzebruch : is_bounded atiyah_hirzebruch_exact_couple := + is_bounded_sequence _ s₀ (λn, n - 1) + begin + intro s n H, + exact sorry + end + begin + intro s n H, apply trivial_shomotopy_group_of_is_strunc, + apply is_strunc_strunc, + exact lt_of_le_sub_one H, + end --- definition postnikov_smap (X : spectrum) (k : ℤ) : --- strunc (k+1) X →ₛ strunc k X := --- smap.mk (λn, postnikov_map_int (X n) (k + n) ∘* ptrunc_int_change_int _ !norm_num.add_comm_middle) --- (λn, begin --- exact sorry --- -- exact (_ ⬝vp* !ap1_pequiv_ap) ⬝h* (!postnikov_map_int_natural_pequiv ⬝v* _ ⬝v* _) ⬝vp* !ap1_pcompose, --- end) - - --- section atiyah_hirzebruch --- parameters {X : Type*} (Y : X → spectrum) - --- definition atiyah_hirzebruch_exact_couple : exact_couple rℤ spectrum.I := --- @exact_couple_sequence (λs, strunc s (spi X (λx, Y x))) --- (λs, !postnikov_smap ∘ₛ strunc_change_int _ !succ_pred⁻¹) - --- -- parameters (k : ℕ) (H : Π(x : X) (n : ℕ), is_trunc (k + n) (Y x n)) - - - --- end atiyah_hirzebruch +end atiyah_hirzebruch diff --git a/homotopy/strunc.hlean b/homotopy/strunc.hlean index 677decd..0acf418 100644 --- a/homotopy/strunc.hlean +++ b/homotopy/strunc.hlean @@ -1,10 +1,9 @@ import .spectrum .EM --- TODO move this -open trunc_index nat - namespace int + -- TODO move this + open trunc_index nat algebra section private definition maxm2_le.lemma₁ {n k : ℕ} : n+(1:int) + -[1+ k] ≤ n := le.intro ( @@ -39,13 +38,29 @@ open int trunc eq is_trunc lift unit pointed equiv is_equiv algebra EM namespace spectrum -definition ptrunc_maxm2_change_int {k l : ℤ} (X : Type*) (p : k = l) +definition ptrunc_maxm2_change_int {k l : ℤ} (p : k = l) (X : Type*) : ptrunc (maxm2 k) X ≃* ptrunc (maxm2 l) X := pequiv_ap (λ n, ptrunc (maxm2 n) X) p -definition loop_ptrunc_maxm2_pequiv (k : ℤ) (X : Type*) : - Ω (ptrunc (maxm2 (k+1)) X) ≃* ptrunc (maxm2 k) (Ω X) := +definition is_trunc_maxm2_change_int {k l : ℤ} (X : pType) (p : k = l) + : is_trunc (maxm2 k) X → is_trunc (maxm2 l) X := +by induction p; exact id + +definition is_trunc_maxm2_loop {k : ℤ} {A : Type*} (H : is_trunc (maxm2 (k+1)) A) : + is_trunc (maxm2 k) (Ω A) := begin + induction k with k k, + apply is_trunc_loop, exact H, + apply is_contr_loop, + cases k with k, + { exact H }, + { apply is_trunc_succ, apply is_trunc_succ, exact H } +end + +definition loop_ptrunc_maxm2_pequiv {k : ℤ} {l : ℕ₋₂} (p : maxm2 (k+1) = l) (X : Type*) : + Ω (ptrunc l X) ≃* ptrunc (maxm2 k) (Ω X) := +begin + induction p, induction k with k k, { exact loop_ptrunc_pequiv k X }, { refine pequiv_of_is_contr _ _ _ !is_trunc_trunc, @@ -55,6 +70,43 @@ begin { change is_set (trunc -2 X), apply _ }} end +definition ptrunc_elim_phomotopy2 [constructor] (k : ℕ₋₂) {A B : Type*} {f g : A →* B} (H₁ : is_trunc k B) + (H₂ : is_trunc k B) (p : f ~* g) : @ptrunc.elim k A B H₁ f ~* @ptrunc.elim k A B H₂ g := +begin + fapply phomotopy.mk, + { intro x, induction x with a, exact p a }, + { exact to_homotopy_pt p } +end + +definition loop_ptrunc_maxm2_pequiv_ptrunc_elim' {k : ℤ} {l : ℕ₋₂} (p : maxm2 (k+1) = l) + {A B : Type*} (f : A →* B) {H : is_trunc l B} : + Ω→ (ptrunc.elim l f) ∘* (loop_ptrunc_maxm2_pequiv p A)⁻¹ᵉ* ~* + @ptrunc.elim (maxm2 k) _ _ (is_trunc_maxm2_loop (is_trunc_of_eq p⁻¹ H)) (Ω→ f) := +begin + induction p, induction k with k k, + { refine pwhisker_right _ (ap1_phomotopy _) ⬝* @(ap1_ptrunc_elim k f) H, + apply ptrunc_elim_phomotopy2, reflexivity }, + { apply phomotopy_of_is_contr_cod, exact is_trunc_maxm2_loop H } +end + +definition loop_ptrunc_maxm2_pequiv_ptrunc_elim {k : ℤ} {l : ℕ₋₂} (p : maxm2 (k+1) = l) + {A B : Type*} (f : A →* B) {H1 : is_trunc ((maxm2 k).+1) B } {H2 : is_trunc l B} : + Ω→ (ptrunc.elim l f) ∘* (loop_ptrunc_maxm2_pequiv p A)⁻¹ᵉ* ~* ptrunc.elim (maxm2 k) (Ω→ f) := +begin + induction p, induction k with k k: esimp at H1, + { refine pwhisker_right _ (ap1_phomotopy _) ⬝* ap1_ptrunc_elim k f, + apply ptrunc_elim_phomotopy2, reflexivity }, + { apply phomotopy_of_is_contr_cod } +end + +definition loop_ptrunc_maxm2_pequiv_ptr {k : ℤ} {l : ℕ₋₂} (p : maxm2 (k+1) = l) (A : Type*) : + Ω→ (ptr l A) ~* (loop_ptrunc_maxm2_pequiv p A)⁻¹ᵉ* ∘* ptr (maxm2 k) (Ω A) := +begin + induction p, induction k with k k, + { exact ap1_ptr k A }, + { apply phomotopy_pinv_left_of_phomotopy, apply phomotopy_of_is_contr_cod, apply is_trunc_trunc } +end + definition is_trunc_of_is_trunc_maxm2 (k : ℤ) (X : Type) : is_trunc (maxm2 k) X → is_trunc (max0 k) X := λ H, @is_trunc_of_le X _ _ (maxm2_le_maxm0 k) H @@ -62,24 +114,12 @@ definition is_trunc_of_is_trunc_maxm2 (k : ℤ) (X : Type) definition strunc [constructor] (k : ℤ) (E : spectrum) : spectrum := spectrum.MK (λ(n : ℤ), ptrunc (maxm2 (k + n)) (E n)) (λ(n : ℤ), ptrunc_pequiv_ptrunc (maxm2 (k + n)) (equiv_glue E n) - ⬝e* (loop_ptrunc_maxm2_pequiv (k + n) (E (n+1)))⁻¹ᵉ* - ⬝e* (loop_pequiv_loop - (ptrunc_maxm2_change_int _ (add.assoc k n 1)))) + ⬝e* (loop_ptrunc_maxm2_pequiv (ap maxm2 (add.assoc k n 1)) (E (n+1)))⁻¹ᵉ*) definition strunc_change_int [constructor] {k l : ℤ} (E : spectrum) (p : k = l) : strunc k E →ₛ strunc l E := begin induction p, reflexivity end -definition is_trunc_maxm2_loop (A : pType) (k : ℤ) - : is_trunc (maxm2 (k + 1)) A → is_trunc (maxm2 k) (Ω A) := -begin - intro H, induction k with k k, - { apply is_trunc_loop, exact H }, - { apply is_contr_loop, cases k with k, - { exact H }, - { have H2 : is_contr A, from H, apply _ } } -end - definition is_strunc [reducible] (k : ℤ) (E : spectrum) : Type := Π (n : ℤ), is_trunc (maxm2 (k + n)) (E n) @@ -98,13 +138,36 @@ definition is_strunc_strunc (k : ℤ) (E : spectrum) : is_strunc k (strunc k E) := λ n, is_trunc_trunc (maxm2 (k + n)) (E n) -definition is_trunc_maxm2_change_int {k l : ℤ} (X : pType) (p : k = l) - : is_trunc (maxm2 k) X → is_trunc (maxm2 l) X := -by induction p; exact id +definition str [constructor] (k : ℤ) (E : spectrum) : E →ₛ strunc k E := +smap.mk (λ n, ptr (maxm2 (k + n)) (E n)) + abstract begin + intro n, + apply psquare_of_phomotopy, + refine !passoc ⬝* pwhisker_left _ !ptr_natural ⬝* _, + refine !passoc⁻¹* ⬝* pwhisker_right _ !loop_ptrunc_maxm2_pequiv_ptr⁻¹*, + end end + +definition strunc_elim [constructor] {k : ℤ} {E F : spectrum} (f : E →ₛ F) + (H : is_strunc k F) : strunc k E →ₛ F := +smap.mk (λn, ptrunc.elim (maxm2 (k + n)) (f n)) + abstract begin + intro n, + apply psquare_of_phomotopy, + symmetry, + refine !passoc⁻¹* ⬝* pwhisker_right _ !loop_ptrunc_maxm2_pequiv_ptrunc_elim' ⬝* _, + refine @(ptrunc_elim_ptrunc_functor _ _ _) _ ⬝* _, + refine _ ⬝* @(ptrunc_elim_pcompose _ _ _) _ _, + apply is_trunc_maxm2_loop, + refine is_trunc_of_eq _ (H (n+1)), exact ap maxm2 (add.assoc k n 1)⁻¹, + apply ptrunc_elim_phomotopy2, + apply phomotopy_of_psquare, + apply ptranspose, + apply smap.glue_square + end end definition strunc_functor [constructor] (k : ℤ) {E F : spectrum} (f : E →ₛ F) : strunc k E →ₛ strunc k F := -smap.mk (λn, ptrunc_functor (maxm2 (k + n)) (f n)) sorry +strunc_elim (str k F ∘ₛ f) (is_strunc_strunc k F) definition is_strunc_EM_spectrum (G : AbGroup) : is_strunc 0 (EM_spectrum G) := @@ -121,11 +184,6 @@ begin apply is_trunc_loop, apply is_trunc_succ, exact IH }} end -definition strunc_elim [constructor] {k : ℤ} {E F : spectrum} (f : E →ₛ F) - (H : is_strunc k F) : strunc k E →ₛ F := -smap.mk (λn, ptrunc.elim (maxm2 (k + n)) (f n)) - (λn, sorry) - definition trivial_shomotopy_group_of_is_strunc (E : spectrum) {n k : ℤ} (K : is_strunc n E) (H : n < k) : is_contr (πₛ[k] E) := @@ -139,11 +197,6 @@ have I : m < 2, from (is_trunc_of_is_trunc_maxm2 m (E (2 - k)) (K (2 - k))) (nat.succ_le_succ (max0_le_of_le (le_sub_one_of_lt I))) -definition str [constructor] (k : ℤ) (E : spectrum) : E →ₛ strunc k E := -smap.mk (λ n, ptr (maxm2 (k + n)) (E n)) - (λ n, sorry) - - structure truncspectrum (n : ℤ) := (carrier : spectrum) (struct : is_strunc n carrier) diff --git a/move_to_lib.hlean b/move_to_lib.hlean index 217faf4..dee29bd 100644 --- a/move_to_lib.hlean +++ b/move_to_lib.hlean @@ -209,38 +209,24 @@ namespace int { exact nat.zero_le m } end - section - -- is there a way to get this from int.add_assoc? - private definition maxm2_monotone.lemma₁ {n k : ℕ} - : k + n + (1:int) = k + (1:int) + n := - begin - induction n with n IH, - { reflexivity }, - { exact ap (λ z, z + 1) IH } - end + definition not_neg_succ_le_of_nat {n m : ℕ} : ¬m ≤ -[1+n] := + by cases m: exact id - private definition maxm2_monotone.lemma₂ {n k : ℕ} : ¬ n ≤ -[1+ k] := - int.not_le_of_gt (lt.intro - (calc -[1+ k] + (succ (k + n)) - = -(k+1) + (k + n + 1) : by reflexivity - ... = -(k+1) + (k + 1 + n) : maxm2_monotone.lemma₁ - ... = (-(k+1) + (k+1)) + n : int.add_assoc - ... = (0:int) + n : by rewrite int.add_left_inv - ... = n : int.zero_add)) - - definition maxm2_monotone {n k : ℤ} : n ≤ k → maxm2 n ≤ maxm2 k := + definition maxm2_monotone {n m : ℤ} (H : n ≤ m) : maxm2 n ≤ maxm2 m := begin - intro H, induction n with n n, - { induction k with k k, - { exact trunc_index.of_nat_monotone (le_of_of_nat_le_of_nat H) }, - { exact empty.elim (maxm2_monotone.lemma₂ H) } }, - { induction k with k k, - { apply minus_two_le }, - { apply le.tr_refl } } - end + { induction m with m m, + { apply of_nat_le_of_nat, exact le_of_of_nat_le_of_nat H }, + { exfalso, exact not_neg_succ_le_of_nat H }}, + { apply minus_two_le } end + definition sub_nat_le (n : ℤ) (m : ℕ) : n - m ≤ n := + le.intro !sub_add_cancel + + definition sub_one_le (n : ℤ) : n - 1 ≤ n := + sub_nat_le n 1 + end int namespace pmap @@ -286,6 +272,44 @@ namespace trunc { apply idp_con } end + definition ptrunc_elim_ptr_phomotopy_pid (n : ℕ₋₂) (A : Type*): + ptrunc.elim n (ptr n A) ~* pid (ptrunc n A) := + begin + fapply phomotopy.mk, + { intro a, induction a with a, reflexivity }, + { apply idp_con } + end + + definition is_trunc_of_eq {n m : ℕ₋₂} (p : n = m) {A : Type} (H : is_trunc n A) : is_trunc m A := + transport (λk, is_trunc k A) p H + + definition is_trunc_ptrunc_of_is_trunc [instance] [priority 500] (A : Type*) + (n m : ℕ₋₂) [H : is_trunc n A] : is_trunc n (ptrunc m A) := + is_trunc_trunc_of_is_trunc A n m + + definition ptrunc_pequiv_ptrunc_of_is_trunc {n m k : ℕ₋₂} {A : Type*} + (H1 : n ≤ m) (H2 : n ≤ k) (H : is_trunc n A) : ptrunc m A ≃* ptrunc k A := + have is_trunc m A, from is_trunc_of_le A H1, + have is_trunc k A, from is_trunc_of_le A H2, + pequiv.MK (ptrunc.elim _ (ptr k A)) (ptrunc.elim _ (ptr m A)) + abstract begin + refine !ptrunc_elim_pcompose⁻¹* ⬝* _, + exact ptrunc_elim_phomotopy _ !ptrunc_elim_ptr ⬝* !ptrunc_elim_ptr_phomotopy_pid, + end end + abstract begin + refine !ptrunc_elim_pcompose⁻¹* ⬝* _, + exact ptrunc_elim_phomotopy _ !ptrunc_elim_ptr ⬝* !ptrunc_elim_ptr_phomotopy_pid, + end end + + definition ptrunc_change_index {k l : ℕ₋₂} (p : k = l) (X : Type*) + : ptrunc k X ≃* ptrunc l X := + pequiv_ap (λ n, ptrunc n X) p + + definition ptrunc_functor_le {k l : ℕ₋₂} (p : l ≤ k) (X : Type*) + : ptrunc k X →* ptrunc l X := + have is_trunc k (ptrunc l X), from is_trunc_of_le _ p, + ptrunc.elim _ (ptr l X) + end trunc namespace sigma diff --git a/pointed.hlean b/pointed.hlean index f1e1e85..355125e 100644 --- a/pointed.hlean +++ b/pointed.hlean @@ -204,10 +204,15 @@ namespace pointed definition loop_punit : Ω punit ≃* punit := loop_pequiv_punit_of_is_set punit - definition phomotopy_of_is_contr [constructor] {X Y: Type*} (f g : X →* Y) [is_contr Y] : + definition phomotopy_of_is_contr_cod [constructor] {X Y : Type*} (f g : X →* Y) [is_contr Y] : f ~* g := phomotopy.mk (λa, !eq_of_is_contr) !eq_of_is_contr + definition phomotopy_of_is_contr_dom [constructor] {X Y : Type*} (f g : X →* Y) [is_contr X] : + f ~* g := + phomotopy.mk (λa, ap f !is_prop.elim ⬝ respect_pt f ⬝ (respect_pt g)⁻¹ ⬝ ap g !is_prop.elim) + begin rewrite [▸*, is_prop_elim_self, +ap_idp, idp_con, con_idp, inv_con_cancel_right] end + end pointed