From f835dc896ef336f0af2086093f15ccd8e0f07aba Mon Sep 17 00:00:00 2001 From: spiceghello Date: Tue, 10 Apr 2018 10:41:57 +0200 Subject: [PATCH] fix typos --- .gitignore | 2 +- Notes/smash.tex | 4 ++-- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/.gitignore b/.gitignore index f2584a1..4c31fc0 100644 --- a/.gitignore +++ b/.gitignore @@ -47,7 +47,7 @@ build.ninja # these rules might exclude image files for figures etc. # *.ps # *.eps -# *.pdf +*.pdf ## Generated if empty string is given at "Please type another file name for output:" .pdf diff --git a/Notes/smash.tex b/Notes/smash.tex index 2855ede..e5c2e3c 100644 --- a/Notes/smash.tex +++ b/Notes/smash.tex @@ -216,7 +216,7 @@ We define the pointed equivalences: \begin{lem}\label{lem:smash-general} The smash product is functorial: if $f:A\pmap A'$ and $g:B\pmap B'$ then $f\smsh g:A\smsh B\pmap A'\smsh B'$. We write $A\smsh g$ or $f\smsh B$ if one of the - functions is the identity function. Moreover, if $p:f\sim f'$ and $q:g\sim g'$ then $p\smsh q:f\smsh g\sim f'\smsh g'$; this operation preserves reflexivities, symmetries and transitivies. We will write $p \smsh g$ or $f \smsh q$ if one of the homotopies is reflexivity. + functions is the identity function. Moreover, if $p:f\sim f'$ and $q:g\sim g'$ then $p\smsh q:f\smsh g\sim f'\smsh g'$; this operation preserves reflexivities, symmetries and transitivities. We will write $p \smsh g$ or $f \smsh q$ if one of the homotopies is reflexivity. % The smash product satisfies the following properties. % \begin{itemize} % \item The smash product is functorial: if $f:A\pmap A'$ and $g:B\pmap B'$ then @@ -729,7 +729,7 @@ are filled by (corollaries of) \autoref{lem:smash-general}. $\epsilon_{B,C}\equiv\epsilon : (B\pmap C)\smsh B \pmap C$ dinatural in $B$ and pointed natural in $C$. These maps satisfy the unit-counit laws: $$(A\to\epsilon_{A,B})\o \eta_{A\to B,A}\sim \idfunc[A\to B]\qquad - \epsilon_{B,B\smsh C}\o \eta_{A,B}\smsh B\sim\idfunc[A\smsh B].$$ + \epsilon_{B,A\smsh B}\o \eta_{A,B}\smsh B\sim\idfunc[A\smsh B].$$ \end{lem} Note: $\eta$ is also dinatural in $B$, but we don't need this. \begin{proof}