From f8f0157df53f1a6f1660b4659df7953cbaad3b91 Mon Sep 17 00:00:00 2001 From: Floris van Doorn Date: Fri, 30 Jun 2017 13:54:23 +0100 Subject: [PATCH] define ==> notation for convergence of spectral sequences --- algebra/left_module.hlean | 1 - algebra/module_exact_couple.hlean | 64 +++++++++++++++++++++++++++++-- move_to_lib.hlean | 19 +++++++++ 3 files changed, 79 insertions(+), 5 deletions(-) diff --git a/algebra/left_module.hlean b/algebra/left_module.hlean index 0de50d3..e7eff94 100644 --- a/algebra/left_module.hlean +++ b/algebra/left_module.hlean @@ -421,7 +421,6 @@ end (λa, to_right_inv (equiv_of_isomorphism eB) _) (λb, to_right_inv (equiv_of_isomorphism eC) _) (short_exact_mod.h H)) - end end diff --git a/algebra/module_exact_couple.hlean b/algebra/module_exact_couple.hlean index 80c4762..cf45445 100644 --- a/algebra/module_exact_couple.hlean +++ b/algebra/module_exact_couple.hlean @@ -451,6 +451,52 @@ namespace left_module -- print axioms Dinfdiag0 -- print axioms Dinfdiag_stable + open int group prod convergence_theorem prod.ops + + definition Z2 [constructor] : Set := gℤ ×g gℤ + + structure converges_to.{u v w} {R : Ring} (E' : gℤ → gℤ → LeftModule.{u v} R) + (Dinf : graded_module.{u 0 w} R gℤ) : Type.{max u (v+1) (w+1)} := + (X : exact_couple.{u 0 v w} R Z2) + (HH : is_bounded X) + (e : Π(x : gℤ ×g gℤ), exact_couple.E X x ≃lm E' x.1 x.2) + (s₀ : gℤ) + (p : Π(n : gℤ), is_bounded.B' HH (deg (k X) (n, s₀)) = 0) + (f : Π(n : gℤ), exact_couple.D X (deg (k X) (n, s₀)) ≃lm Dinf n) + + infix ` ⟹ `:25 := converges_to + + definition converges_to_g [reducible] (E' : gℤ → gℤ → AbGroup) (Dinf : gℤ → AbGroup) : Type := + (λn s, LeftModule_int_of_AbGroup (E' n s)) ⟹ (λn, LeftModule_int_of_AbGroup (Dinf n)) + + infix ` ⟹ᵍ `:25 := converges_to_g + + section + open converges_to + parameters {R : Ring} {E' : gℤ → gℤ → LeftModule R} {Dinf : graded_module R gℤ} (c : E' ⟹ Dinf) + local abbreviation X := X c + local abbreviation HH := HH c + local abbreviation s₀ := s₀ c + local abbreviation Dinfdiag (n : gℤ) (k : ℕ) := Dinfdiag X HH (n, s₀) k + local abbreviation Einfdiag (n : gℤ) (k : ℕ) := Einfdiag X HH (n, s₀) k + + include c + + theorem is_contr_converges_to (H : Π(n s : gℤ), is_contr (E' n s)) (n : gℤ) : is_contr (Dinf n) := + begin + assert H2 : Π(m : gℤ) (k : ℕ), is_contr (Einfdiag m k), + { intro m k, apply is_contr_E, exact is_trunc_equiv_closed_rev -2 (equiv_of_isomorphism (e c _)) }, + assert H3 : Π(m : gℤ), is_contr (Dinfdiag m 0), + { intro m, fapply nat.rec_down (λk, is_contr (Dinfdiag m k)), + { exact is_bounded.B HH (deg (k X) (m, s₀)) }, + { apply Dinfdiag_stable, reflexivity }, + { intro k H, exact sorry /-note zz := is_contr_middle_of_is_exact (short_exact_mod_infpage k)-/ }}, + refine @is_trunc_equiv_closed _ _ _ _ (H3 n), + apply equiv_of_isomorphism, + exact Dinfdiag0 X HH (n, s₀) (p c n) ⬝lm f c n + end + end + end left_module open left_module namespace pointed @@ -485,8 +531,7 @@ namespace pointed open prod prod.ops fiber parameters {A : ℤ → Type*[1]} (f : Π(n : ℤ), A n →* A (n - 1)) [Hf : Πn, is_conn_fun 1 (f n)] include Hf - protected definition I [constructor] : Set := trunctype.mk (gℤ ×g gℤ) !is_trunc_prod - local abbreviation I := @pointed.I + local abbreviation I [constructor] := Z2 -- definition D_sequence : graded_module rℤ I := -- λv, LeftModule_int_of_AbGroup (πc[v.2] (A (v.1))) @@ -510,8 +555,8 @@ namespace spectrum parameters {A : ℤ → spectrum} (f : Π(s : ℤ), A s →ₛ A (s - 1)) - protected definition I [constructor] : Set := trunctype.mk (gℤ ×g gℤ) !is_trunc_prod - local abbreviation I := @spectrum.I +-- protected definition I [constructor] : Set := gℤ ×g gℤ + local abbreviation I [constructor] := Z2 definition D_sequence : graded_module rℤ I := λv, LeftModule_int_of_AbGroup (πₛ[v.1] (A (v.2))) @@ -652,6 +697,17 @@ namespace spectrum refine !add.assoc ⬝ ap (add s) !add.comm ⬝ !add.assoc⁻¹, end + definition converges_to_sequence : (λn s, πₛ[n] (sfiber (f s))) ⟹ᵍ (λn, πₛ[n] (A ub)) := + begin + fapply converges_to.mk, + { exact exact_couple_sequence }, + { exact is_bounded_sequence }, + { intros, reflexivity }, + { exact ub }, + { intro n, change max0 (ub - ub) = 0, exact ap max0 (sub_self ub) }, + { intro n, reflexivity } + end + end -- Uncomment the next line to see that the proof uses univalence, but that there are no holes diff --git a/move_to_lib.hlean b/move_to_lib.hlean index 899739a..0be4007 100644 --- a/move_to_lib.hlean +++ b/move_to_lib.hlean @@ -120,6 +120,25 @@ namespace eq end eq open eq +namespace nat + + protected definition rec_down (P : ℕ → Type) (s : ℕ) (H0 : P s) (Hs : Πn, P (n+1) → P n) : P 0 := + have Hp : Πn, P n → P (pred n), + begin + intro n p, cases n with n, + { exact p }, + { exact Hs n p } + end, + have H : Πn, P (s - n), + begin + intro n, induction n with n p, + { exact H0 }, + { exact Hp (s - n) p } + end, + transport P (nat.sub_self s) (H s) + +end nat + namespace pmap definition eta {A B : Type*} (f : A →* B) : pmap.mk f (respect_pt f) = f :=